检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙礼辉[1]
机构地区:[1]安徽商贸职业技术学院经济贸易系,安徽芜湖241002
出 处:《新乡学院学报》2016年第9期30-33,共4页Journal of Xinxiang University
基 金:安徽省高等学校省级质量工程--大学生创客实验室建设计划项目(2015ckjh139);安徽省高校优秀青年人才支持计划重点项目(gxyq ZD2016489);安徽商贸职业技术学院科研项目(2016KYZ04)
摘 要:针对当前移动推荐中存在的"信息过载"和推荐质量不高等问题,提出一种基于地理位置和协同过滤相结合的移动推荐算法。算法根据用户与物品间距离对被推荐物品进行预过滤,以缩小推荐范围,并根据用户间的相似度,对预过滤的物品进行偏好预测推荐。实验证明,该算法明显优于基于用户协同过滤推荐算法(UserCF)和基于位置的最近距离均值推荐方法(DARS)。With the rapid development of O2O E-business, mobile recommendation algorithm became a research focus. Aiming at problems such as "information overload" and poor recommendation quality existing in the current mobile recommendation, the paper put forward a mobile recommendation algorithm based on the combination of geographic position and collaborative filtering. In this algorithm, recommended objects were pre-filtered according to the distance between a user and the object so as to narrow the recommendation scope, and then preference prediction were recommended to the pre-fihered objects according to similarity among users. Experimental results showed that the results obtained through this algorithm obviously prevailed over results from the userbased collaborative filtering recommendation algorithm (UserCF) and the position-based minimum distance average recommendation method (DARS).
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158