分配夹心半环与加法完全J*-单半环(英文)  

Distributive Sandwich Semirings and Additively Completely J*-simple Semirings

在线阅读下载全文

作  者:陈益智[1] 何勇[2] 李勇华[3] 

机构地区:[1]惠州学院数学系,惠州广东516007 [2]湖南科技大学计算机科学与工程学院,湘潭湖南411201 [3]华南师范大学数学科学学院,广州广东510631

出  处:《数学进展》2016年第5期665-678,共14页Advances in Mathematics(China)

基  金:Supported by NSFC(No.11501237,No.11401246,No.11426112,No.61572013);the NSF of Guangdong Province(No.2014A030310087,No.2014A030310119,No.2016A030310099);Outstanding Young Teacher Training Program of Colleges and Universities in Guangdong Province(No.YQ2015155);Scientific Research Innovation Team Project of Huizhou University(No.hzux1201523)

摘  要:本文介绍了一类加法完全J*-单半环,这类半环的加法半群为完全J*-单半群.为了给出这类半环的结构,首先利用半环的H*-类构造了一类分配夹心伪环.接着利用加法左零半环、加法右零半环和分配夹心伪环,给出了加法完全J*-单半环的一个结构定理,推广了文献[J.Aust.Math.Soc.,1975,20(3):257-267]中关于加法完全单半环的相关结构定理.In this paper we introduce a class of semirings whose additive reduct is an additively completely J*-simple semigroup. To obtain a construction of such semirings a dis-tributive sandwich skew-halfring is constructed by an H*-class. Next, using additive left-zero semirings, additive right-zero semirings and distributive sandwich skew-halfrings, we establish a construction of additively completely J*-simple semirings, which generalizes the main result of Grillet on semirings with a completely simple additive semigroup in [J. Aust. Math. Soc., 1975, 20(3): 257-267] to additive non-regular semirings.

关 键 词:加法完全J*-单半环 伪半环 加法左零半环 加法右零半环 REES矩阵半群 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象