检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]惠州学院数学系,惠州广东516007 [2]湖南科技大学计算机科学与工程学院,湘潭湖南411201 [3]华南师范大学数学科学学院,广州广东510631
出 处:《数学进展》2016年第5期665-678,共14页Advances in Mathematics(China)
基 金:Supported by NSFC(No.11501237,No.11401246,No.11426112,No.61572013);the NSF of Guangdong Province(No.2014A030310087,No.2014A030310119,No.2016A030310099);Outstanding Young Teacher Training Program of Colleges and Universities in Guangdong Province(No.YQ2015155);Scientific Research Innovation Team Project of Huizhou University(No.hzux1201523)
摘 要:本文介绍了一类加法完全J*-单半环,这类半环的加法半群为完全J*-单半群.为了给出这类半环的结构,首先利用半环的H*-类构造了一类分配夹心伪环.接着利用加法左零半环、加法右零半环和分配夹心伪环,给出了加法完全J*-单半环的一个结构定理,推广了文献[J.Aust.Math.Soc.,1975,20(3):257-267]中关于加法完全单半环的相关结构定理.In this paper we introduce a class of semirings whose additive reduct is an additively completely J*-simple semigroup. To obtain a construction of such semirings a dis-tributive sandwich skew-halfring is constructed by an H*-class. Next, using additive left-zero semirings, additive right-zero semirings and distributive sandwich skew-halfrings, we establish a construction of additively completely J*-simple semirings, which generalizes the main result of Grillet on semirings with a completely simple additive semigroup in [J. Aust. Math. Soc., 1975, 20(3): 257-267] to additive non-regular semirings.
关 键 词:加法完全J*-单半环 伪半环 加法左零半环 加法右零半环 REES矩阵半群
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.62.169