检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《水力发电学报》2016年第9期55-62,共8页Journal of Hydroelectric Engineering
基 金:国家自然科学基金(51279161)
摘 要:准确地提取水轮发电机机组局部放电信号特征,对于发电机绝缘在线监测具有重要意义。为此,本文提出了基于时频流形的发电机局部放电信号特征提取方法。首先通过相空间重构算法,将局部放电(PD)时域信号转换为多个子序列,并分别求其时频分布,构建PD信号的时频流形。然后利用局部线性嵌入算法(LLE)将高维数据映射到低维空间,提取PD信号在低维空间的特征参数。最后,通过K-最近邻分类器(KNNC)的故障诊断模型实现发电机组不同局部放电的模式识别,其故障识别率高于95%。Accurate extract of signal features of partial discharge (PD) is crucial to on-line monitoring of generator set insulation systems. This paper describes a new extraction method of the PD signals based on time-frequency manifolds. This method uses phase space reconstruction to convert a PD signal into multiple sub-sequences, calculates their respective time-frequency distributions, and constructs dynamic time-frequency manifolds of the raw PD signal. Then, using locally linear embedding, the high-dimensional data are mapped to a low dimensional space where feature parameters of the PD signals are extracted. The new method has been applied to identification of PD patterns of different generators using a K-nearest neighbor classifier (KNNC). Its failure recognition rate is higher than 95%.
关 键 词:发电机 局放 时频流形 流形学习 局部线性嵌入算法
分 类 号:TM81[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3