检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学数理与软件工程学院,甘肃兰州730070
出 处:《苏州科技学院学报(自然科学版)》2016年第3期18-21,共4页Journal of Suzhou University of Science and Technology (Natural Science Edition)
基 金:国家自然科学基金资助项目(61262045)
摘 要:对简单图G(V,E),存在一个正整数k,使得映射f:V(G)∪E(G)→{1,2,…,k},如果坌uv∈E(G),有f(u)≠f(v),f(u)≠f(uv)且C(u)≠C(v),其中C(u)={f(u)}∪{f(uv),f(v)|uv∈E(G),v∈V(G)},则称f是图G的邻点强可区别E-全染色,且称最小的数k为图G的邻点强可区别E-全色数。在此基础上应用构造染色法研究了图F_m×F_n、M(P_n^2)的邻点强可区别E-全染色,并得出了其邻点强可区别E-全色数。Let G (V,E) be a simple graph,k be a positive integer,f is a mapping from V(G)UE(G) to {1, 2,.-. ,k} ,thenf is called the adgacent vertex strongly distinguishing E-total coloring of G and the minimum number of k is called the adjacent vertex strongly distinguishing E-total chromatic of G, if uv ∈ E(G)f(u)≠f(v), f(u) ≠f(uv), uv ∈E(G),C(u)≠C(v). Based on this, this paper studied the adjacent vertex strongly distinguishing E-total coloring of graph of Fm×Fn and M(pn2) with the structure staining method. And the adjacent ver- tex strongly distinguishing E-total chromatic numbers of both graphs were obtained thereby.
关 键 词:笛卡尔积图 k方图 邻点强可区别E-全染色 邻点强可区别E-全色数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229