两类特殊图的邻点强可区别E-全染色  被引量:2

On the adaject vertex strongly distinguishing E-total coloring of two special graphs

在线阅读下载全文

作  者:顾忠栋 强会英[1] 魏邦魁 

机构地区:[1]兰州交通大学数理与软件工程学院,甘肃兰州730070

出  处:《苏州科技学院学报(自然科学版)》2016年第3期18-21,共4页Journal of Suzhou University of Science and Technology (Natural Science Edition)

基  金:国家自然科学基金资助项目(61262045)

摘  要:对简单图G(V,E),存在一个正整数k,使得映射f:V(G)∪E(G)→{1,2,…,k},如果坌uv∈E(G),有f(u)≠f(v),f(u)≠f(uv)且C(u)≠C(v),其中C(u)={f(u)}∪{f(uv),f(v)|uv∈E(G),v∈V(G)},则称f是图G的邻点强可区别E-全染色,且称最小的数k为图G的邻点强可区别E-全色数。在此基础上应用构造染色法研究了图F_m×F_n、M(P_n^2)的邻点强可区别E-全染色,并得出了其邻点强可区别E-全色数。Let G (V,E) be a simple graph,k be a positive integer,f is a mapping from V(G)UE(G) to {1, 2,.-. ,k} ,thenf is called the adgacent vertex strongly distinguishing E-total coloring of G and the minimum number of k is called the adjacent vertex strongly distinguishing E-total chromatic of G, if uv ∈ E(G)f(u)≠f(v), f(u) ≠f(uv), uv ∈E(G),C(u)≠C(v). Based on this, this paper studied the adjacent vertex strongly distinguishing E-total coloring of graph of Fm×Fn and M(pn2) with the structure staining method. And the adjacent ver- tex strongly distinguishing E-total chromatic numbers of both graphs were obtained thereby.

关 键 词:笛卡尔积图 k方图 邻点强可区别E-全染色 邻点强可区别E-全色数 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象