检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田野[1]
出 处:《电力系统保护与控制》2016年第17期31-38,共8页Power System Protection and Control
摘 要:通过建立改进的4层神经网络群,以历史负荷电流作为样本进行训练,实现对于未来负荷电流的预测。针对传统BP神经网络易收敛到局部极值的问题,引入了动态调整的动量因子。为增强对于随月份动态变化较剧烈的负荷的预测能力,提出了BP网络群结构。数据模拟结果说明该算法具有高精确性,可有效估算出下一阶段线路电流负荷变化趋势值,并且预测速度满足实际使用要求。该模型可以用于监测重点单位用电负荷变化情况,及早提示供电单位采取相应措施,促进智能电网建设。Using the former actual line current load operation value as the training sample, the improved four layer neural network group model is put forward to predict the future current load value. For the problem that BP neural network is easy to converge to a local extremum, automatic adjusting momentum is applied. To enhance the ability in forecasting the load changing a lot in different months, the BP network group structure is put forward. Data simulation results show that the algorithm has high accuracy and can effectively estimate the current load change trend of the next time. The speed of prediction can meet the requirements of practical application. This model can be used as a large data analysis model for monitoring the change of the power load of the key units, and the early proposal is promptly proposed to power supply unit to take the corresponding measures. This model can also promote the construction of smart grid.
分 类 号:TM715[电气工程—电力系统及自动化] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229