基于分层稀疏表示特征学习的高光谱图像分类研究  被引量:8

Research of Hyperspectral Image Classification Based on Hierarchical Sparse Representation Feature Learning

在线阅读下载全文

作  者:李铁[1] 孙劲光[1] 张新君[2] 王星[1] 

机构地区:[1]辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125105 [2]大连理工大学计算机科学与技术学院,辽宁大连116024

出  处:《激光与光电子学进展》2016年第9期72-79,共8页Laser & Optoelectronics Progress

基  金:国家自然科学基金(61402212);国家科技支撑计划(2013BAH12F00)

摘  要:提出一种基于分层稀疏表示特征学习的方法即分层判别特征学习算法对高光谱图像进行分类,在两层的分层结构中用空间金字塔匹配模型在每层的稀疏编码上用最大池化方法学习得到判别特征,用分层判别特征学习得到的特征表示对于分类更稳健、判别性更好。在两个高光谱数据集上评价该方法,结果表明,该方法具有更好的分类精度。A method of classification based on hierarchical sparse representation feature learning as hierarchical discriminative feature learning algorithm is developed for hyperspectral image classification. The spatial-pyramid- matching model is used, and the sparse codes learned from the discriminative features are obtained by max pooling in eaeh layer of the two-layer hierarchical structure. The representation of features achieved by the proposed method are more robust and discriminative for the classification. The proposed method is evaluated on two hyperspeetral datasets, and the results show that the proposed method has good classification accuracy.

关 键 词:遥感 高光谱图像分类 特征学习 稀疏表示 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象