检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学航空航天工程学院,陕西西安710038
出 处:《现代电子技术》2016年第19期136-139,共4页Modern Electronics Technique
基 金:陕西自然科学基金(2015JM6345)
摘 要:为了提高过电压识别的准确性,以及加快过电压的识别速度,提出一种自适应遗传算法优化支持向量机的过电压识别方法。首先针对单一特征信息难以获得过电压高识别率的问题,采用时域波形、波头、时频谱的组合特征作为过电压识别特征,然后采用过电压的训练样本对支持向量机进行学习,建立过电压识别的分类器,并引入自适应遗传算法对支持向量机参数进行优化,最后采用具体过电压识别实例进行性能仿真分析。结果表明,该方法的过电压平均识别率达到95%以上,远远超过了实际应用的85%要求,且识别结果要优于其他过电压识别方法。In order to improve the overvoltage recognition accuracy and quicken the recognition speed, an overvohage iden- tification method with genetic algorithm optimizing support vector machine is proposed. Since the single feature information is dif- ficult to obtain the high overvohage recognition rate, the combined features of time domain waveform, wave head and time-fre- quency spectrum are taken as the recognition features of overvoltage respectively, and then the training samples of overvoltage are used to study the support vector machine. The classifier of overvohage identification is established, and the adaptive genetic algorithm is introduced to optimize the parameters of support vector machine. The performance of an overvohage recognition in- stance was performed for simulation analysis. The results show that the average overvoltage recognition rate of the proposed method can reach up to 95%, far exceeds the practical application requirements of 85%, and the recognition result is superior to other overvohage identification methods.
分 类 号:TN911-34[电子电信—通信与信息系统] TM863[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28