检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学信息与电气工程学院,江苏徐州221116
出 处:《控制与决策》2016年第10期1879-1883,共5页Control and Decision
基 金:国家自然科学基金项目(61473299);中国博士后科学基金项目(2014T70557;2012M521142);江苏省博士后科学基金项目(1301009B)
摘 要:针对流数据的实时、有序和维数高等特点,提出一种基于多种群协同微粒群优化的流数据聚类算法.该算法利用变量分而治之的思想,多个种群协同优化多个类中心,进而求出问题完整的类中心集合.给出一种类中心变化趋势的预估策略,以快速追踪环境变化.为防止多个子微粒群同时优化一个类中心,提出一种相似子微粒群的合并策略.最后将所提出的算法用于多个数据集,实验结果验证了算法的有效性.Focusing on the stream data real time performance, orderliness, and high dimension, a streaming data clustering algorithm based on cooperative particle swarm optimization is proposed, which divides sequential stream data into several data subsets according to the time stamp. For any data subset, the high-dimensional clustering problem is firstly transformed into the low dimensional sub-problem with only one class center. Then, one sub-swarm optimizes one clustering sub-problem independently, and all the sub-swarms cooperate with each other to find the whole solution of the streaming data. Moreover, in order to enhance the speed of tracking the environment changes, a forecast strategy is designed to predict the change trend of class centers. In order to avoid multiple sub-swarms repeatedly searching for the same class center, a merging strategy of similar sub-swarms is proposed. Finally, the proposed algorithm is applied to multiple data sets, and experimental results show the effectiveness.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185