基于迭代容积卡尔曼滤波的神经网络训练算法  被引量:1

Novel Neural Network Training Algorithm Based on Iterated Cubature Kalman Filter

在线阅读下载全文

作  者:袁光耀[1] 胡振涛[1] 张谨[1] 赵新强[1] 付春玲[2] YUAN Guang-yao HU Zhen-tao ZHANG Jin ZHAO Xin-qiang FU Chun-ling(Institute of Image Processing and Pattern Recognition, Henan University,Kaifeng 475004, China School of Physics and Electronics, Henan University,Kaifeng 475004, China)

机构地区:[1]河南大学图像处理与模式识别研究所,开封475004 [2]河南大学物理与电子学院,开封475004

出  处:《计算机科学》2016年第10期256-261,共6页Computer Science

基  金:国家自然科学基金(61300214);中国博士后基金(2014M551999);河南省高校科技创新团队支持计划(13IRTSTHN021);河南省高校青年骨干教师资助计划(2013GGJS-026);河南大学优秀青年培育基金(0000A40366);河南大学教学改革项目(2015)资助

摘  要:针对现有应用非线性滤波算法对神经网络进行训练时存在精度不足的问题,提出了一种基于迭代容积卡尔曼滤波的神经网络训练算法。首先,将前馈神经网络各个节点的连接权值和偏置作为状态向量,建立前馈神经网络的状态空间模型。其次,利用Spherical-Radial准则生成容积点,并依据Gauss-Newton迭代策略来优化量测更新过程中获取的状态估计值和状态估计误差协方差,通过容积卡尔曼滤波估计精度的改善,提升神经网络节点的连接权值和偏置的训练效果。理论分析和仿真实验结果验证了所提算法的可行性和有效性。In view of insufficient accuracy in the existing application of nonlinear filtering algorithm for neural network training,a novel neural network training algorithm based on iterated cubature Kalman filter was proposed. Firstly, the connection weights and bias of feedforward neural network are used as the state vector to establish the state space mo- del. Secondly, using the Spherical-Radial standard to generate cubature points, the state estimation and covariance ac- quired during the measurement update process are optimized based on Gauss-Newton iteration strategy. The training effect of neural network connecting weights and bias is enhanced through the improvement of the estimation precision of cubature Kalman filter. The theoretical analysis and simulation results show the feasibility and effectiveness of the algo- rithm.

关 键 词:前馈神经网络 状态空间模型 容积卡尔曼滤波 Gauss-Newton迭代 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象