基于在线手写签名的密钥生成方法  被引量:2

Key Generation Method Based on On-line Handwritten Signature

在线阅读下载全文

作  者:何梦[1,2] 吴仲城[2] 李芳[2] 

机构地区:[1]中国科学院合肥物质科学研究院,合肥230031 [2]中国科学院强磁场科学中心,合肥230031

出  处:《计算机工程》2016年第10期164-168,共5页Computer Engineering

基  金:国家自然科学基金资助项目(61273323)

摘  要:为实现生物密钥特征可靠性编码,基于在线手写签名,提出一种在线签名生成密钥的方法,即基于等概率质量量化的动态位分配方法。该方法采用Fisher Ratio准则进行用户依赖的特征选择,选取最能表征用户的特征,运用基于似然比的静态位分配方法中等概率量化思想,根据特征区间控制系数确定注册样本特征量化概率质量,以提高注册阶段的时间性能。考虑到计算量化概率质量时定积分运算的时间成本,提出以曲线段所接梯形面积来替代定积分的优化策略。在SVC2004签名数据库上进行认证性能验证实验及时间复杂度对比实验,结果表明,该方法获得的错误接受率为2.54%,错误拒绝率为28.63%,梯形改进的量化方法签名注册时间为9 s,约为原高斯积分量化方法的1/10。In order to implement biological keys reliablility coding, on the basis of online hand-writing signature, this paper proposes a key generation method using on-line handwritten signature, which is based on the method of equal probability mass quantization. It utilizes the user-dependent fisher ratio criterion to get the user characteristics, which are the most representative of the user, and applies the thought of equal probability mass in the static bit allocation method based on likelihood ratio, but the quantitative probability mass of the registered sample is determined by the characteristic interval control coefficient, which improves the time performance of the registration phase. Factoring in time like definite integral in the computation of the quantitative probability mass, this paper raises an optimization strategy which replaces the definite integral with the trapezoidal area of curved section. The identity authentication experiment and the time complexity contrast experiment are carried out on the SVC2004. Results show that the method gains False Acceptance Rate(FAR) of 2.54% and False Rejection Rate(FRR) of 28.63% . The registration time of the trapezoidal improvement is 9 s,which is about 1/10 of the original Gauss integral method.

关 键 词:生物密码 在线手写签名 身份认证 用户依赖 梯形改进 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象