检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:焦晓璇 景博[1] 黄以锋[1] 羌晓清 刘晓东[2,3] Jiao Xiaoxuan Jing Bo Huang Yifeng Qiang Xiaoqing Liu Xiaodong(College of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an 710038, China Jineheng Nanjing Electrical and Hydraulic Engineering Research Center, Aviation Industry Corporation of China, Nanjing 210000, China Aviation Science and Technology Key Laboratory of Aviation Mechanical and Electrical System,Nanjing 210000, China)
机构地区:[1]空军工程大学航空航天工程学院,西安710038 [2]中航工业金城南京机电液压工程研究中心,南京210000 [3]航空机电系统综合航空科技重点实验室,南京210000
出 处:《仪器仪表学报》2016年第9期1978-1988,共11页Chinese Journal of Scientific Instrument
基 金:航空科学基金(20142896022)项目资助
摘 要:针对机载燃油泵故障数据少、诊断效率低、维护成本高、缺乏有效诊断方法的问题,搭建了机载燃油泵燃油转输系统实验平台,提出利用小波包分析进行特征提取和基于BP_AdaBoost机载燃油泵故障诊断方法。首先测量燃油泵7种典型状态模式所对应的振动信号和出口压力信号;然后在分析信号时频特性和统计特性的基础上,利用小波包分解提取振动信号不同频段能量值作为故障特征参数,结合振动信号峭度以及压力信号均值构造特征向量;最后利用特征向量训练和验证BP_AdaBoost分类模型。实验结果不仅优化了传感器,而且表明BP_Adaboost算法与SVM、BP算法相比,能够有效实现对机载燃油泵的故障诊断。Aiming at the problems of less failure data, low diagnostic efficiency, high maintenance cost and lack of efficient diagnosis method of airborne fuel pump, an experiment platform of the fuel transfer system for airborne fuel pump is developed and a fault diagnosis method for airborne fuel pump based on wavelet packet analysis and BP_AdaBoost neural network algorithm is presented. Firstly, the vibration signals and outlet pressure signals of the fuel pump corresponding to seven kinds of typical state modes are acquired. Then, on the basis of the analyzing of the signal time-frequency features and statistical features, wavelet packet decomposition is used to extract the energies of the vibration signal in different frequency bands that are taken as the fault characteristic parameters, which combines with the vibration signal kurtosis and mean outlet pressure to construct the fault feature vectors. Finally, the fault feature vectors are used to train and verify the BP_AdaBoost classification model. The experiment results not only optimize the sensor, but also show that the BP_ AdaBoost algorithm can effectively achieve the fault diagnosis of airborne fuel pump compared with SVM and BP algorithms.
关 键 词:机载燃油泵 实验平台 小波包分析 峭度 BP_Adaboost
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222