遥感高时空融合方法的研究进展及应用现状  被引量:31

Review of methods and applications of high spatiotemporal fusion of remote sensing data

在线阅读下载全文

作  者:刘建波[1] 马勇[1] 武易天 陈甫[1] 

机构地区:[1]中国科学院遥感与数字地球研究所,北京100094 [2]中国科学院大学,北京100049

出  处:《遥感学报》2016年第5期1038-1049,共12页NATIONAL REMOTE SENSING BULLETIN

基  金:中国科学院"十三五"突破项目(编号:Y3ZZ07101A)

摘  要:针对遥感图像的"时空矛盾",评述了当前解决这一问题最主要的方法即遥感时空信息融合的方法,包括基于变化模型的融合、基于重建模型的融合以及基于学习模型的融合。通过分析各个模型的研究现状,指出了每种模型方法的优劣,特别重点介绍了影响较大的自适应时空融合方法的理论以及对其的改进算法。同时本文总结了当前时空融合模型在长时间序列模拟以及大区域数据集生成等方面的实际应用的效果,以及分析了影响时空融合结果的主要因素。最后基于这些问题和影响因素提出了今后时空融合模型发展的目标和方向。Remote sensing images can provide important and abundant information about the Earth at a global or local scale. Thus, many applications often require remote sensing data with high acquisition frequency and high spatial resolution. However, meeting this require- ment is a considerable challenge given satellite limitations. The spatiotemporal fusion method provides a feasible way to solve these "spatial- temporal" contradictions. In the last 10 years, spatiotemporal fusion has elicited wide interest in various applications because it integrates the superiority of multi- source satellite data in fine spatial resolution or frequent temporal coverage and it can generate fused images with high spatial and temporal resolution, In this study, we reviewed the advantages and limitations of three types of method for spatiotemporal fusion, namely, transforma- tion-based, reconstruction-based, and learning-based methods, First, the transformation-based method consistently filters and processes transformed data and then accesses high-spatiotemporal resolu- tion data via inverse transform. It mainly focuses on the spatial and spectral information of multi-source satellite image enhancement or fu- sion. The spatial resolution of the results obtained with this method remains low, arid the accuracy is relatively poor because the temporal change information is not used in this method. Second, the reconstruction-based method has elicited much attention since the proposal of a semi-physical fusion model and STARFM. This method integrates the information of temporal change, spatial change, and spectral change among multi-source satellite images acquired in different times and generates high-spatiotemporal resolution data by calculating the weight of different changes. This method provides an excellent fusion approach for spatiotemporal fusion because the results show high accuracy. However, the results would be poor when the type of land cover changes or the cover area is heterogeneous. Third, the learning-based meth- od is bas

关 键 词:多源数据 遥感 时空矛盾 高时空融合 模型 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象