检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋礼青 张明新[2] 郑金龙[2] 戴娇[1,2] 尚赵伟[3]
机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116 [2]常熟理工学院计算机科学与工程学院,江苏常熟215500 [3]重庆大学计算机科学与技术学院,重庆400030
出 处:《计算机应用研究》2016年第11期3251-3254,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61173130)
摘 要:CFSFDP是基于密度的新聚类算法,可聚类非球形数据集,具有聚类速度快、实现简单等优点。CFSFDP需人工尝试确定密度阈值dc,且对一个类中存在多密度峰值的数据无法进行准确聚类。为解决该缺点,提出基于近邻距离曲线和类合并优化CFSFDP(简称NM-CFSFDP)的聚类算法。算法用近邻距离曲线变化情况自动确定密度阈值dc,采用确定dc的CFSFDP对数据聚类,并利用计算dc值的方法指导类的合并,引入内聚程度衡量参数解决了类合并后不能撤销的难题,从而实现对多密度峰值数据的正确聚类。通过实验对比,NM-CFSFDP算法确实比CFSFDP算法具有更加精确的聚类效果。CFSFDP algorithm is a new clustering algorithm based on density, which cluster non-spherical data sets. CFSFDP has the advantages of fast clustering speed and simple realization. But the CFSFDP algorithm needs to perform multiple attempts to determine the density threshold dc and the existence of multiple density peaks of one class leads to incorrect cluste- ring. In view of the disadvantages, this paper proposed optimization of CFSFDP based on neighbor distance curve and merging clusters (for short NM-CFSFDP) algorithm. Firstly, the new algorithm gave the density threshold which named dc automatical- ly, the dc was determined by the change of the nearest neighbor distance curve. Secondly, NM-CFSFDP used CFSFDP algo- rithm, which gave dc automatically, to cluster the data set, and then merged the classes that could be merged, and the merging operation could be dynamically revoked in the algorithm. Through the contrast experiment, the NM-CFSFDP algorithm is more accurate than the CFSFDP in clustering.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158