检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用研究》2016年第11期3299-3302,3306,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(71401107;71303157);国家教育部人文社科基金资助项目(12YJZH126;14YJCZH71);上海市自然科学基金资助项目(13ZR1458200)
摘 要:利用K-核分解的方法识别中心节点,被认为在复杂网络重要节点发现中具有特殊的优势。但K-核分解法在有向网络中只能简单地利用节点的出度、入度或者两者之和进行分解,不能区分两者的差异。针对这一问题,将有向网络中出度与入度的概念相结合,提出交叉度(cross degree)的概念;并利用交叉度提出识别有向网络中心节点的C-核分解法。该算法在无向网络中退化为K-核分解法。通过仿真实验和分析,发现该方法既保留K-核方法准确有效的优势,同时还具有较好的区分度,能够较好地识别有向网络中的重要节点。The K-shell decomposition algorithm is taken as an efficient method to identify influential node in complex net- works. Nevertheless, K-shell method cannot be used in directed network naturally, as it only simply used in-degree, out-de- gree or the sum of them to run the algorithm. This paper proposed a new measure of local importance of nodes in directed net- works based on out-degree and in-degree, called cross-degree. Then, it presented a novel algorithm to identify the center nodes in directed network using decomposition method like K-shell, which called C-shell. The algorithm degenerated to K- shell method in undirected network. Simulation results of epidemic spreading process on real network by using SIR model show that the C-shell decomposition algorithm can identify core nodes in directed networks defectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28