基于用户引力的协同过滤推荐算法  被引量:9

Collaborative filtering recommendation algorithm based on user's gravitation

在线阅读下载全文

作  者:王国霞[1] 

机构地区:[1]北京科技大学自动化学院,北京100083

出  处:《计算机应用研究》2016年第11期3329-3333,共5页Application Research of Computers

摘  要:针对传统的基于用户的协同过滤推荐算法存在用户兴趣偏好模型过于粗糙和邻居集不够准确等问题,提出了一种新的协同过滤推荐算法,命名为基于用户间引力的协同过滤推荐算法。该算法认为用户使用的社会标签可以反映用户的喜好类型及喜好程度,利用社会标签构建用户喜好物体模型,并计算它们之间的万有引力,把万有引力的大小作为用户相似度的度量,在此基础上获得目标用户的邻居用户和评分预测,把获得预测评分高的若干项目推荐给用户。实验结果说明算法可以获得比其他算法较优的推荐性能。There are some shortcomings in user-based collaborative filtering, this paper proposed a new collaborative filtering recommendation algorithms, named user' s gravitation based collaborative filtering (UGBCF) recommendation algorithm, it used a new method of similarity measure to improve the user-based collaborative recommendation algorithms. This paper thought that the social tags used by user can reflect user' s preference and how much the preference, so it used those social tags to build user' s preference object model. It computed the gravitation between preference objects, viewed the gravitation as the similarity of users. According to the similarity, the neighbor user of the target user could be gotten, and the prediction score of his unseleeted items could be calculated by aggregated the neighbor users' score. The results of experiment show that UGBCF can provide better recommendation quality than other collaborative filtering recommendation.

关 键 词:推荐算法 协同过滤推荐 万有引力定律 社会标签 

分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象