检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕钊[1,2] 陆雨[1,2] 周蚌艳[1,2] 吴小培[1,2]
机构地区:[1]安徽大学计算智能与信号处理教育部重点实验室,安徽合肥230039 [2]安徽大学信息保障技术协同创新中心,安徽合肥230601
出 处:《华南理工大学学报(自然科学版)》2016年第9期32-40,共9页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(61401002;61271352);安徽省自然科学基金资助项目(1408085QF125);安徽高校省级自然科学研究重点项目(KJ2014A011)~~
摘 要:为改善基于眼电图(EOG)的人体行为识别系统性能,提高多任务背景下扫视信号识别的正确率,提出了一种基于独立分量分析(ICA)的扫视信号样本优化算法.该算法首先以单次扫视数据为分析对象,根据独立成分在采集电极的映射模式,设计了一种扫视相关独立成分的自动选择方法,并建立了相应的ICA空域滤波器;然后以原始EOG线性投影后信号的识别正确率为度量准则实现对干扰扫视信号的剔除.对4类扫视信号进行了"组内测试"与"组间测试",实验结果表明,经文中算法优化后识别正确率达99.57%与98.82%,比优化前分别提升了0.57%与0.83%,说明文中算法能够对扫视信号样本进行有效的优化,提高其识别正确率.In order to improve the performance of an electrooculogram (EOG)-based human activity recognition (HAR) system and increase the correct recognition ratio of multi-class saccade signals, a sample optimization algorithm is proposed on the basis of independent component analysis (ICA). In the algorithm, by taking a single saccade data as the object, an automatic selection method of saccade related independent components (SRICs) is designed according to the independent components (ICs)-to-electrode mapping mode, and a corresponding ICA spatial filter is established. Then, noisy saccade samples are deleted on the basis of the correct recognition ratio of saccade signals after the linear projection of original EOGs. In the lab environment, the ICA spatial filter is utilized to classify four types of saccade signals by "run-to-run test" and "session-to session test". The results show that, in the two tests, the correct recognition ratios of the data optimized by the proposed algorithm are respectively 99.57% and 98.82% , and they are 0.57% and 0.83% higher than those of original EOG signals, which means that the proposed algorithm can effectively optimize saccade signals and thus improve the correct recognition ratio.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222