检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学上海市应用数学和力学研究所,上海200072
出 处:《上海大学学报(自然科学版)》2016年第5期597-605,共9页Journal of Shanghai University:Natural Science Edition
基 金:国家自然科学基金资助项目(U1663205;51174130);上海市重点学科建设资助项目(S30106);上海市科委部分地方院校能力建设计划重点资助项目(12160500200)
摘 要:首先,由Hamilton原理推导外侧施加横向激励的输液管道流固耦合弯曲振动微分方程,针对固-铰支承管道提出一种新的振型函数,利用Galerkin法求得前五阶固有频率表达式,并且通过对比验证了新振型函数的正确性.其次,在一阶截断情况下求得这类管道的挠度、弯矩和剪力表达式,讨论了流速、液压和外激频率变化对固-铰支承管道中点挠度和最大弯矩的影响.结果表明,由新振型函数确定的前五阶固有频率不仅计算简便而且具有很高的精度,同时验证了输液管道固有频率对液压和流速的依赖性,也证实了对于流固耦合问题,结构发生共振与外激频率接近结构固有频率有关同样适用.The fluid-structure interaction vibration equation of a clamped-hinged pipeline under steady flow, liquid pressure and lateral stimulating force is derived based on the Hamilton principle. A new mode function suitable for the Galerkin method is used to solve the equation. Expressions of the first five orders of natural frequencies of the system are derived and validated. Next, deflection, bending moment, and transverse force exerted on the cross-section of the clamped-hinged pipeline are expressed with the first-order approximation of the mode function. The effects of liquid pressure, flow velocity, and stimulating frequency on the middle-point deflection, maximal bending moment throughout the clamped-hinged pipeline are discussed. The results show that the natural frequencies of the clamped-hinged pipeline are easy to calculate and with high accuracy using the method. Their values depend on the liquid pressure and flow velocity in the pipe. The phenomenon that resonance occurs when the natural frequency is close to the stimulating frequency also exists in fluid-structure interaction.
关 键 词:流固耦合 固有频率 受迫振动 GALERKIN法 固-铰支承管道
分 类 号:O322[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70