一种模型参考自适应速度改进估算方法  

An Improved Method of Speed Estimation Based on MRAS

在线阅读下载全文

作  者:曾树华[1] 吕敬祥[2] 聂小武[1,3] ZENG Shu-hua LV Jin-xiang NIE Xiao-wu(Hunan Railway College of Science & Technology, Zhuzhou Hunan 412000, China Institute of Electrical Engineering, Chinese Academy of Sciences, Beijin 100190, China School of Information Science and Engineering, Central South University, Changsha 411201, China)

机构地区:[1]湖南铁路科技职业技术学院,湖南株洲412006 [2]中国科学院电工研究所,北京100190 [3]中南大学信息科学与工程学院,湖南长沙410016

出  处:《兰州工业学院学报》2016年第5期40-43,共4页Journal of Lanzhou Institute of Technology

基  金:国家自然科学基金项目(51304247);湖南教育厅科研项目(14C0759)

摘  要:在电机无速度传感器矢量控制方式中常见的模型为参考自适应法,传统的方法是由电机的电压方程和磁链方程得推导出电压模型方程和电流模型方程,通过比较两种模型的共同输出磁链来修正电流模型参数,从电流模型参数计算出速度.电压模型采用对反电动势直接积分得到转子磁链,由于初始积分等误差会造成磁链估算不准,尤其在低速时严重影响系统精度.对电压模型进行了改进,把输入改为磁链,输出改为电压,然后把计算的电压与测量电压进行比较从而校正转速,该方法彻底解决了电压模型的积分问题.利用simulink搭建仿真模型分别在高、低速进行转速仿真实验,证明该模型的观测转速效果好.The MRAS is a common method in vector control without speed sensor. The voltage model equation and current model equation were deduced by means of the motor voltage equation and flux equation in the traditional way,and the current model parameters were revised by comparing common output flux of the two models,then the speed of motor was calculated from the current model parameters. The rotor flux linkage was the pure integral for back electromotive force( back-EMF). The flux linkage estimation was inaccurate because of error such as integral initial value,it seriously affected the system precision at low speeds. In this paper,the voltage model was improved,the input was flux linkage and the output was the voltage,and the difference between the calculation of voltage and the measure of voltage was used to adjust the speed. The method solved the integration problem of voltage model. The simulation experiments were conducted to the methods effective.

关 键 词:转速估算 模型参考自适应 积分误差 电压模型 

分 类 号:TM301.2[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象