检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马立新[1] 李渊[1] 郑晓栋 尹晶晶[1] MA Lixin LI Yuan ZHENG Xiaodong YIN Jingjing(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, Chin)
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093
出 处:《能源研究与信息》2016年第3期153-157,共5页Energy Research and Information
基 金:国家自然科学基金资助项目(61205076)
摘 要:随着社会的发展,人们的日常生活和工作生产越来越依赖于电力系统.精准的电力负荷预测是电网安全、稳定运行的重要保障.为减小节假日在日最大负荷预测过程中的影响,提出了法定节假日对日最大负荷的影响及日类型量化处理方法,并采用一种改进的BP(back propagation)神经网络——高阶BP神经网络进行连续多天最大负荷预测.实验算例结果表明:该数据处理和预测方法能有效地减小节假日对负荷预测的影响,提高了预测精度,并有较强的工程实践价值和应用前景.With the development of society,people's daily life and work increasingly depend on the production of power system. Accurate power load prediction is a key guarantee for safe and stable operation of the grid. Based on the characteristics of historical load data, effect of legal holiday on the daily peak load as well as the method of quantifying day type were put forward in this paper, when the daily peak load was predicted. A modified back propagation(BP) neural network, advanced BP network(ABP), was adopted to predict the continuous multi-day daily peak load. The simulation results showed that this data processing and prediction method could effectively demonstrated the influence of holiday on load prediction and improved the prediction accuracy. It has a strong practice value and wide application prospect.
关 键 词:负荷预测 日最大负荷 日类型 假日负荷预测 高阶BP神经网络
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13