基于用户行为的家庭日负荷曲线模型  被引量:17

Domestic Daily Load Curve Modeling Based on User Behavior

在线阅读下载全文

作  者:林顺富[1] 黄娜娜[1] 赵伦加 汤波[1] 李东东[1] 

机构地区:[1]上海电力学院电气工程学院,上海市200090 [2]国网湖北省电力公司孝感供电公司,湖北省孝感市432000

出  处:《电力建设》2016年第10期114-121,共8页Electric Power Construction

基  金:国家自然科学基金项目(51207088);国家电网公司科技项目(SGRI-DL-71-14-004);上海市科委科创项目(14DZ1201602);上海绿色能源并网工程技术研究中心项目(13DZ2251900);上海市教委曙光计划项目(15SG50)~~

摘  要:居民用电所占比例逐渐提高,对配电网影响日益增大。有效的家庭日负荷曲线模型对需求侧管理及智能电网技术的发展至关重要。该文建立了基于用户行为的家庭日负荷曲线模型。基于测量数据,建立典型居民负荷电气学模型;基于统计调研数据,利用马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)算法,引入概率函数表示居民人口、家用电器拥有情况等居民家庭特征的影响,建立居民负荷行为学模型。并采用自下向上的分层建模思路,结合电气学模型与行为学模型建立家庭日负荷曲线模型,同时搭建了仿真平台。所建模型具有系统性和通用性,仿真与实测对比分析验证了该文所提模型的可行性与准确性。With the proportion of residential power consumption grow ing gradually,the residential loads have the increasing influence on the distribution network. The effective modeling of domestic daily load curve is critical for the development of demand side management and smart grid. This paper constructs the model of domestic daily load curve based on user behavior. We construct the electrical models of typical residential loads based on the tested data. And based on the statistic research data,we adopt Markov chain Monte Carlo( MCMC) method to construct the behavioral models of residential loads which introduces probability functions to represent the influence of resident household characteristics such as resident population and household appliances owned. Then,we adopt a bottom-up modeling method to construct the model of domestic daily load curve and the simulation platform with combining electrical model and behavioral model. The proposed model is universal and systematic,whose feasibility and accuracy are validated through the compared analysis between simulations and measurement.

关 键 词:日负荷曲线 居民负荷 用户行为 马尔科夫链蒙特卡洛(MCMC) 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象