检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学机械工程及自动化学院,北京100191 [2]中国航发商用航空发动机有限责任公司,上海201108
出 处:《航空制造技术》2016年第21期41-49,62,共10页Aeronautical Manufacturing Technology
摘 要:叶片的加工精度及其稳定性对航空发动机的性能有直接的影响,然而,其加工难度较大,型面轮廓精度和表面质量很难稳定地达到设计要求。为此,国内外研究者提出了许多叶片加工变形的控制方法。在深入分析叶片变形形成机理的基础上,对现有的叶片加工变形控制方法进行分类总结和分析,阐述了不同叶片变形控制方法的原理和特点。同时,结合目前叶片的结构特点、材料特性和主要加工工艺难题指出,控制叶片型面的加工残余应力变形是实现20μm级叶片型面加工精度的关键,并且指出利用超硬砂轮悬臂高速磨削加工是实现中小型叶片型面综合变形控制的有效方法之一。Proifle precision and stability of aeroengine blade has a direct inlfuence on the global performance of aeroengine. Because of high machining dififculty and weak stiffness, proifle precision and surface quality are very hard to meet the design requirements. So, many methods are developed and utilized to control the deformation of aeroengine blade. Based on the analysis of deformation mechanism and application characteristics, the deformation control methods and mechanism for machining aeroengine blade are classiifed. Meanwhile, different characteristics of deformation control methods are analyzed in depth. According to the structure, dififcult-to-cut material characteristic and some processing prob-lems of aeroengine blade, controlling the deformation caused by residual stress is the key point to reduce the proifle errors of blade to be 20μm. Moreover, the high-speed helical cantilever grinding process using the super-hard abrasive wheel is effective in the ifnish machining aeroengine blade to control the integrated deformation.
分 类 号:V263[航空宇航科学与技术—航空宇航制造工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147