检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]苏州科技学院数理学院,苏州215009 [2]商丘师范学院物理与电气信息学院,商丘476000
出 处:《动力学与控制学报》2016年第5期391-394,共4页Journal of Dynamics and Control
基 金:国家自然科学基金资助项目(11372169);苏州科技学院研究生科研创新计划(SKCX14_056)~~
摘 要:建立二阶自治广义Birkhoff系统的微分方程.给出该系统的线性化方程,得到该线性方程转化为梯度系统的条件,利用梯度系统的性质对线性系统的奇点进行了分析,然后再利用Perron定理探讨了相应的非线性系统的奇点类型.结果表明,如果线性系统能成为梯度系统,那么相应的非线性系统的奇点可能是结点或者鞍点.The differential equations of the second order autonomous generalized Birkhoff systems were firstly es- tablished. The linearized equations of this system were also given. The conditions for" the translation of linearized system into a gradient system were put forward. The singular points for linearized system were analyzed by the characteristic of the gradient system. Moreover, the types of singular points for the corresponding nonlinear sys- tem were studied by Perron theorem. The results show that if the linearized system can be translated into a gradi- ent system, the singular point for the corresponding nonlinear system is probably a node or a saddle point.
关 键 词:广义BIRKHOFF系统 梯度系统 奇点
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229