检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学电子信息与电气工程学部,辽宁大连116023
出 处:《电子学报》2016年第9期2248-2253,共6页Acta Electronica Sinica
基 金:国家重点基础研究发展规划(973计划)项目(No.2013CB430403);国家自然科学基金项目(No.61374154)
摘 要:遥感分类旨在从图像光谱中提取资源环境监测可用的地理信息,然而基于模式分类的图像处理技术受光谱漂移影响而缺乏历史样本重复利用的有效策略,制约着有限目标样本下遥感分类精度的提高.针对该问题,本文构建了基于改进的贝叶斯ARTMAP神经网络的迁移学习遥感影像分类算法,通过提高谐振匹配性来抑制类别扩散,利用节点的离散增量期望最大化参数更新策略,将历史遥感样本中的地物分类先验信息迁移到目标模型当中.实验结果表明本文方法能有效利用历史遥感数据弥补缺少目标训练数据的不足,相比于其他样本利用策略大幅提高遥感影像分类精度.Remote sensing classification aims at extracting available geographic information from image spectrum for resources and environment monitoring,but due to the spectral drift effect,the lack of effective strategies on historical sample reuse for image processing technology based on pattern classification restricts remote sensing classification accuracy with limited target samples. To solve this problem,this paper proposes a transfer learning algorithm for remote sensing classification using improved Bayesian ARTMAP neural network. More productive resonance matching is used to suppress the unattractive property of category proliferation,so that the incremental expectation maximization can be introduced to update parameters adaptively. The classification prior knowledge of the historical samples is transferred to the target model. The experimental results showthat this method can effectively compensate for the lack of target training data by reusing the historical samples and significantly improve the accuracy of remote sensing image classification compared with other sample utilization strategy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145