New insights into estrogenic regulation of O^6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O^6-benzylguanine indicates fresh avenues for therapy  被引量:5

New insights into estrogenic regulation of O^6-methylguanine DNA-methyltransferase(MGMT) in human breast cancer cells:Co-degradation of ER-α and MGMT proteins by fulvestrant or O^6-benzylguanine indicates fresh avenues for therapy

在线阅读下载全文

作  者:Ameya Paranjpe Nathan I. Bailes Santhi Konduri George C. Bobustuc Francis Ali-Osman Mohd. A. Yusuf Surendra R. Punganuru Hanumantha Rao Madal Debasish Basak AGM Mostofa Kalkunte S. Srivenugopa 

机构地区:[1]Department of Biomedical Sciences and Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA [2]Neuro-Oncology Section, Aurora Advanced Cancer Care, Milwaukee, WI 53215, USA [3]Department of Surgery, The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA

出  处:《The Journal of Biomedical Research》2016年第5期393-410,共18页生物医学研究杂志(英文版)

基  金:supported by grants from the Cancer Prevention Research Institute of Texas(RP130266);the Carson-Leslie Foundation and the Association for Research of Childhood Cancer

摘  要:Endocrine therapy using estrogen receptor-u (ER-α) antagonists for attenuating horm2one-driven cell proliferation is a major treatment modality for breast cancers. To exploit any DNA repair deficiencies associated with endocrine therapy, we investigated the functional and physical interactions of ER-α with O^6-methylguanine DNA methyltransferase (MGMT), a unique DNA repair protein that confers tumor resistance to various anticancer alkylating agents. The ER-α -positive breast cancer cell lines (MCF-7, T47D) and ER- negative cell lines (MDAMB- 468, MDAMB-231), and established inhibitors of ER-α and MGMT, namely, ICI-182,780 (Faslodex) and O^6- benzylguanine, respectively, were used to study MGMT- ER interactions. The MGMT gene promoter was found to harbor one full and two half estrogen-responsive elements (EREs) and two antioxidant-responsive elements (AREs). MGMT expression was upregulated by estrogen, downregulated by tamoxifen in Western blot and promoter-linked reporter assays. Similarly, both transient and stable transfections of Nrf-2 (nuclear factor-erythroid 2-related factor-2) increased the levels of MGMT protein and activity 3 to 4-fold reflecting novel regulatory nodes for this dragresistance determinant. Of the different ER-α antagonists tested, the pure anti-estrogen fulvestrant was most potent in inhibiting the MGMT activity in a dose, time and ER-α dependent manner, similar to O^6-benzylguanine. Interestingly, fulvestrant exposure led to a degradation of both ER-α and MGMT proteins and O^6-benzylguanine also induced a specific loss of ER-a and MGMT proteins in MCF-7 and T47D breast cancer cells with similar kinetics. Immunoprecipitation revealed a specific association of ER-a and MGMT proteins in breast cancer cells. Furthermore, silencing of MGMT gene expression triggered a decrease in the levels of both MGMT and ER-a proteins. The involvement of proteasome in the drug-induced degradation of both proteins was also demonstrated. Fulvestrant enhanced the cytotoxEndocrine therapy using estrogen receptor-u (ER-α) antagonists for attenuating horm2one-driven cell proliferation is a major treatment modality for breast cancers. To exploit any DNA repair deficiencies associated with endocrine therapy, we investigated the functional and physical interactions of ER-α with O^6-methylguanine DNA methyltransferase (MGMT), a unique DNA repair protein that confers tumor resistance to various anticancer alkylating agents. The ER-α -positive breast cancer cell lines (MCF-7, T47D) and ER- negative cell lines (MDAMB- 468, MDAMB-231), and established inhibitors of ER-α and MGMT, namely, ICI-182,780 (Faslodex) and O^6- benzylguanine, respectively, were used to study MGMT- ER interactions. The MGMT gene promoter was found to harbor one full and two half estrogen-responsive elements (EREs) and two antioxidant-responsive elements (AREs). MGMT expression was upregulated by estrogen, downregulated by tamoxifen in Western blot and promoter-linked reporter assays. Similarly, both transient and stable transfections of Nrf-2 (nuclear factor-erythroid 2-related factor-2) increased the levels of MGMT protein and activity 3 to 4-fold reflecting novel regulatory nodes for this dragresistance determinant. Of the different ER-α antagonists tested, the pure anti-estrogen fulvestrant was most potent in inhibiting the MGMT activity in a dose, time and ER-α dependent manner, similar to O^6-benzylguanine. Interestingly, fulvestrant exposure led to a degradation of both ER-α and MGMT proteins and O^6-benzylguanine also induced a specific loss of ER-a and MGMT proteins in MCF-7 and T47D breast cancer cells with similar kinetics. Immunoprecipitation revealed a specific association of ER-a and MGMT proteins in breast cancer cells. Furthermore, silencing of MGMT gene expression triggered a decrease in the levels of both MGMT and ER-a proteins. The involvement of proteasome in the drug-induced degradation of both proteins was also demonstrated. Fulvestrant enhanced the cytotox

关 键 词:estrogen signaling MGMT DNA repair ubiquitin-proteasome pathway breast cancer anti-estrogens 

分 类 号:R737.9[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象