检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴云星 王士军[1,3] 谷艳昌[1,3] 庞琼[1] 王宇[1]
机构地区:[1]南京水利科学研究院,江苏南京210029 [2]河海大学水利水电学院,江苏南京210098 [3]水利部大坝安全管理中心,江苏南京210029
出 处:《水电能源科学》2016年第10期55-59,共5页Water Resources and Power
基 金:水利部公益性行业科研专项(201501033);江苏省水利科技项目(2015010);国家国际科技合作专项(2011DFA72810)
摘 要:为克服传统BP神经网络在渗流压力预测过程中收敛慢、计算量大和易陷入局部极小等缺陷,依据渗流压力的影响因素,研究了模型的结构和输入输出因子,建立了基于遗传算法和LM算法相结合的GA-LMBP神经网络的大坝渗流压力预测模型,即通过遗传算法(GA)的选择、交叉和变异操作得到BP网络的一组全局最优近似解(即网络的初始权值和阈值),再以该近似解为初值,利用LM算法对BP网络进行优化训练,将训练好的网络用于渗流压力的预测。实例应用结果表明,在相同精度的要求下,GA-LMBP神经网络模型收敛速度快、预测精度高,对大坝渗流压力的预测效果更佳,是值得采用的一种模型。In order to overcome the slow convergence speed,large computing capacity and easy converge on local minimum point of traditional BP neural network in the process of seepage pressure prediction,according to the influencing factors of seepage pressure,a GA-LMBP neural network prediction model of dam seepage pressure based genetic algorithm and LM algorithm was established.Its structure,input factor and output factor were studied.A set of global optimal approximate solution(initial weights and thresholds of BP network)was got through the operations of selection,crossover and mutation of genetic algorithm.Then,BP network was optimized by LM algorithm with the approximate solution as initial values,and the trained BP network was used for the prediction of seepage pressure.The application results show that under the same accuracy requirement,GA-LMBP model is characterized by rapid convergence speed and high prediction accuracy,which is better and worth being adopted in dam seepage pressure prediction.
关 键 词:土石坝 渗流压力 GA-LMBP算法 神经网络 预测
分 类 号:TV698.12[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.153