模糊能耗及卡尔曼滤波的电动汽车剩余续驶里程估算  被引量:8

Surplus Driving Range Estimation for Electric Vehicles Based on Fuzzy Energy Consumption and Kalman Filter

在线阅读下载全文

作  者:陈燎[1] 谢明维 盘朝奉[1,2] 

机构地区:[1]江苏大学汽车与交通工程学院,江苏镇江212013 [2]江苏大学汽车工程研究院,江苏镇江212013

出  处:《河南科技大学学报(自然科学版)》2017年第1期28-33,5,共6页Journal of Henan University of Science And Technology:Natural Science

基  金:国家自然科学基金项目(51105178;51475213);江苏省自然科学基金项目(BK2011489);江苏省"六大人才高峰"基金项目(2013-XNY-002)

摘  要:为了提高电动汽车的剩余续驶里程估算精度,在工况识别基础上,提出了一种将模糊能耗与卡尔曼滤波相结合的剩余续驶里程估算模型。建立了整车能耗模型;在MATLAB/Simulink下建立特征参数与能耗之间的模糊规则库;基于卡尔曼滤波对输出剩余续驶里程进行优化。优化结果表明:采用该方法的行驶里程实际值与期望值平均误差为2.11%,相比传统平均能耗法,其剩余续驶里程估算精度提高了77%。In order to improve the estimation accuracy of electric vehicle driving range,a new model of surplus driving range estimation by combining fuzzy energy consumption and Kalman filter was proposed based on condition identification. Firstly,vehicle energy consumption model was established. Then the fuzzy rule library about the characteristic parameters and energy consumption was established with the MATLAB / Simulink.Finally,the output of surplus driving range was optimized based on the Kalman filter. The experimental results show that by using this method the average error of actual mileage value to expectation is 2. 11%. The estimation accuracy of surplus driving range is improved by 77% compared with the traditional average energy consumption method.

关 键 词:电动汽车 剩余续驶里程估算 模糊能耗 卡尔曼滤波 

分 类 号:U469.11[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象