检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民大学应用统计科学研究中心,北京100872 [2]中国人民大学统计学院,北京100872
出 处:《数理统计与管理》2016年第6期1028-1037,共10页Journal of Applied Statistics and Management
基 金:国家自然科学基金项目(71171193);教育部重点研究基地重大项目(12JJD790025)
摘 要:在非寿险索赔强度预测中,目前使用最为广泛的是广义线性模型。索赔强度的广义线性模型假设因变量服从伽马分布或逆高斯分布,且在预测项中仅能考虑协变量的线性效应。这些限制性条件都有可能影响索赔强度预测结果的准确性。本文对索赔强度的广义线性模型进行了推广:用偏T分布代替常用的伽马分布和逆高斯分布;在预测项中引入惩罚样条函数来描述连续型协变量的非线性效应;考虑索赔强度在不同地区的差异性和相邻地区的相依性。最后基于一组实际的车损险数据进行了实证研究,结果表明,本文的推广模型可以明显提高索赔强度预测模型的拟合优度。Generalized linear models are widely used to predict the severity of non-life insurance. In generalized linear models, severity is often assumed to follow Gamma or inverse-Gaussian distribution, and covariances have linear effects on the linear predictor, which may affect the accuracy of predictions. This paper extends the present models in following aspects: Shewed T distribution is used to take place of Gamma and inverse-Gaussian distribution; penalized splines are introduced to the model to reflect the non-linear effect of continuous covariances; severity heterogeneity between distinct areas and severity dependence of adjacent areas are considered in the model.An empirical study based on a set of motor insurance loss data shows that skewed T regression models with spatial effect may significantly improve the goodness of fit.
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63