文献知识网络的节点度变化对领域热点的影响  

Effect of nodal degree change in knowledge linkage network on hotspots in different subject fields

在线阅读下载全文

作  者:闵波[1] 史艳莉[1] 唐春霞[1] 郑萍[1] 刘爱中[1] MIN Bo SHI Yan-li TANG Chun-xia ZHENG Ping LIU Ai-zhong(General Hospital of Xinjiang Military Area Command, Urumqi 830000, Xinjiang Uygur Autonomous Region, Chin)

机构地区:[1]新疆军区总医院,新疆乌鲁木齐830000

出  处:《中华医学图书情报杂志》2016年第11期20-23,共4页Chinese Journal of Medical Library and Information Science

基  金:2015-2016年度中国图书馆学会医院图书馆委员会科研项目(Ytwkyxm15001)

摘  要:随着文献的不断富集,研究内容的相关性会形成一个关联知识网络,而网络的拓扑结构对网络的演化发展存在影响,因此,探索从知识网络的特征变化对领域热点的预测性具有重要意义。探讨文献知识网络节点度变化对近期热点的预测性,测试结果显示,度增长率大的节点形成新关联的准确率显著大于一般节点,即度增长率大的节点在短期内能衍生出较多的新研究内容,表明节点度变化对领域热点具有一定预测性。Since the research content relevance will form a knowledge linkage network with the increasing literature enrichment and the topological structure of knowledge linkage network will affect its evolution. The predictability of nodal degree change for recent hotspots in different subject fields was thus studied, which showed that the accuracy of new linkage formed in nodes with a greater degree was significantly higher than that formed in general nodes, namely the nodes with a greater degree could derive more new research contents in a shorter period, indicating that nodal degree change can predict the hotspots in different subject fields.

关 键 词:知识发现 文献挖掘 复杂网络 热点预测 

分 类 号:G25[文化科学—图书馆学] R-058[医药卫生]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象