检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈文康
机构地区:[1]四川金土地实业有限公司,四川成都610042
出 处:《测绘》2016年第5期227-230,共4页Surveying and Mapping
摘 要:如何快速高效地从遥感影像中检测农村建筑物对农村地区发展研究有着重要意义。传统的目标检测依赖人工提取特征并不能充分挖掘数据之间的关联,以至于检测精度不高。本文利用建筑物和非建筑物影像在Caffe深度学习框架下对几种卷积神经网络进行训练和测试,改进后的Caffe Net网络结构提高了建筑物训练和测试速度。通过对比两个结构相似的神经网络,发现将池化层置于归一层前能显著提升卷积神经网络在遥感影像检测中的精度。实验结果表明,改进后的Caffe Net性能得到了提升,检测精度达到了95.00%,更适合大量数据的训练和测试。
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.26.17