检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李江[1] 冉君军 张克非[1] Li Jiang Ran Junjun Zhang Kefei(School of Computer Science & Technology, Southwest University of Science & Technology, Mianyang Sichuan 621010, China)
机构地区:[1]西南科技大学计算机科学与技术学院,四川绵阳621010
出 处:《计算机应用研究》2016年第12期3843-3846,共4页Application Research of Computers
摘 要:针对传统人脸表情识别算法鲁棒性差,易受到人脸身份信息干扰的问题,在降噪自编码器的基础上,提出一种人脸表情识别算法。首先,从图片中检测出人脸部分,并进行尺度归一化处理;再构造堆栈式降噪自编码神经网络模型进行预训练;最后为了避免由训练样本不足容易造成的过拟合问题,在深度网络模型的全连接层采用了Dropout技术。实验结果在数据集CK+、JAFFE和Yale上均取得了较高的准确率,说明了该方法具有较强的鲁棒性和抗身份信息干扰的能力。Considering the problems of the traditional facial expression recognition algorithm with poor robustness and easily disturbed by the face identity information ,this paper proposed a face recognition algorithm based on denoising AutoEneoders. First, the method detected face area from per picture and made sure all of the face areas were the same scale. Then it construc- ted the model based on stacked denoising AutoEncoders for pre-training data. Finally,in order to avoid the overfitting problem that was caused by the lack of training samples, it adopted the Dropout technology in the last full connection layer of the deep network model. The experimental results on CK + database, JAFFE database and Yale database achieved the high accuracy rate. So that, this method has stronger robustness and capacity of resisting disturbance of the face identity information.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.58.166