检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈志景[1] 黄煜[2] CHEN ZhiJing HUANG Yu
机构地区:[1]南京大学数学系,南京210093 [2]中山大学数学与计算科学学院,广州510275
出 处:《中国科学:数学》2016年第11期1715-1726,共12页Scientia Sinica:Mathematica
基 金:国家自然科学基金(批准号:11371380)资助项目
摘 要:Auslander-Yorke二分定理阐述了一个传递系统要么是几乎等度连续的,要么是敏感的.称一个系统(X,f)是不可分的,如果X中的任意两个内部非空的f-不变闭子集都有公共的内点.不可分性严格弱于传递性.本文证明每一个满足f:X→X半开的不可分系统(X,f)要么是几乎等度连续的,要么是敏感的.进一步,在不可分的几乎等度连续系统中,所有等度连续点都有相同的ω-极限集.The Auslander-Yorke dichotomy theorem says that every transitive system is either sensitive or almost equicontinuous. A topological dynamical system (X, f) is said to be indecomposable if every two f- invariant closed subsets having non-empty interiors must have common interior points. This notion is strictly weaker than transitivity. In this paper, we show that every indecomposable system with f being semi-open is either almost equicontinuous or sensitive, which complements the Auslander-Yorke dichotomy theorem. Moreover, we prove that in an almost equicontinuous indecomposable system all equicontinuous points have the same ω- limited set.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46