检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李本威[1] 林学森[1] 杨欣毅[1] 赵勇[2] 宋汉强[2]
机构地区:[1]海军航空工程学院飞行器工程系,山东烟台264001 [2]海军航空工程学院研究生管理大队,山东烟台264001
出 处:《推进技术》2016年第11期2173-2180,共8页Journal of Propulsion Technology
基 金:国家自然科学基金(51505492);"泰山学者"建设工程专项经费资助
摘 要:为提高发动机转动部件性能衰退故障诊断精度,针对传统的浅层网络和支持向量机(SVM)方法在诊断时存在泛化能力欠缺、易产生局部最优解等问题,引入近年来在模式识别领域取得巨大突破,模拟人脑多层结构的深度置信网络(DBN)进行发动机部件性能衰退故障的诊断。为改进深度置信网络性能,提出一种在无监督和有监督训练阶段都可自适应调整权值的改进算法(ad_DBN)。以涡扇发动机为对象,将两种DBN算法与BP,RBF和SVM方法从诊断精度、计算时间、抗噪能力三方面进行综合比较分析。结果表明DBN算法诊断精度明显优于反向传播(BP)神经网络,径向基(RBF)神经网络和支持向量机(SVM)方法,得益于权值的自适应调整,ad_DBN诊断的平均精度高达97.84%,其抗噪声能力也明显优于其他算法,能够提高故障诊断的有效性和可靠性。In order to improve the accuracy of engine rotating component performance degradation diagnosis and overcome the problems of low generalization ability,easily trapped in local optimal solution caused by traditional shallow network and Support Vector Machine(SVM) diagnosis method, deep belief network(DBN) is introduced to diagnose engine rotating component performance degradation defect. DBN imitates the multiple layer structure of human brain and has made great achievement in pattern recognition area in recent years. In addition,to improve the performance of deep belief network,an improved algorithm(ad_DBN) is put forward,which can upgrade weights adaptively both on unsupervised and supervised learning stages. The article compared the two DBN methods with Back Propagation(BP) network,Radical Basis Function(RBF)network and Support Vector Machine(SVM) methods in diagnosis accuracy,computation time and anti-noise ability using a certain type of turbine fan engine data. Results show that two DBN methods have obvious advantage over the other three methods in diagnosis accuracy. Own to the strategy of adaptive upgrading weigh,ad_DBN diagnosis mean accuracy is as high as 97.84%,and shows better anti-noise ability than other algorithms. It helps to diagnose the engine component performance degradation fault more effectively and reliably.
分 类 号:V235.13[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166