机构地区:[1]Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China [2]Department of Hematology, Shanghai Children's Hospital, Shanghai JiaoTong University, Shanghai 200040, China [3]Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai 201102, China [4]School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
出 处:《Acta Pharmacologica Sinica》2016年第11期1481-1489,共9页中国药理学报(英文版)
基 金:This study was supported by a grant from the National Natural Science Foundation of China (81521005) and the National Basic Research Program of China (2013CB932503).
摘 要:Aim: LS-007 is a CDK inhibitor, which exhibits potent antitumor activity against chronic lymphocytic leukemia and ovarian cancer cells. In this study, we further evaluated the antitumor activity of LS-007 alone and in combination with a Bcl-2 inhibitor ABT-199 in acute leukemia (AL) cells. Methods: Cell viability was detected using resazurin assay, and cell apoptosis was examined using Annexin V/PI double staining and flow cytometry. The inhibition of LS-007 on kinases was evaluated with the mobility shift assay or ELISA. The expression of relevant signaling molecules was assessed using Western blotting and RT-PCR. Primary lymphocytes from patients with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) were separated using FicolI-Paque PLUS. Results: LS-007 inhibited the proliferation of 6 AL cell lines with IC50 values of 100-200 nmol/L, and decreased the survival of ALL and AML patient-derived lymphocytes with mean LD50 value of 67 and 102 nmol/L, respectively. In kinase assays in vitro, LS-007 was more selective for the CDK family, inhibiting CDK2, CDK9, CDK1 and CDK4 at low nanomolar concentrations. In HL-60 and CCRF-CEM cells, LS-007 (0.1-0.4 μmol/L) dose-dependently induced cell apoptosis predominantly through CDK9 inhibition-related dephosphorylation at the ser2 residue of RNA pol II and the corresponding depletion of anti-apoptotic proteins, especially Mcl-1 and XIAP. LS-007 (0.2 and 0.4 μmol/L) also induced cell apoptosis in the patient-derived lymphocytes. In HL-60, CCRF-CEM and Molt-4 cells, combined application of LS-007 with ABT-199 (1 or 2 μmol/L) markedly increased cell apoptosis with a maximal decrease in the XIAP levels as compared with either drug used alone. Conclusion: CDK inhibitor LS-007 potently inhibits the established human AL cell lines and primary AL blasts, and it also shows remarkable synergy with Bcl-2 inhibitor ABT-199.Aim: LS-007 is a CDK inhibitor, which exhibits potent antitumor activity against chronic lymphocytic leukemia and ovarian cancer cells. In this study, we further evaluated the antitumor activity of LS-007 alone and in combination with a Bcl-2 inhibitor ABT-199 in acute leukemia (AL) cells. Methods: Cell viability was detected using resazurin assay, and cell apoptosis was examined using Annexin V/PI double staining and flow cytometry. The inhibition of LS-007 on kinases was evaluated with the mobility shift assay or ELISA. The expression of relevant signaling molecules was assessed using Western blotting and RT-PCR. Primary lymphocytes from patients with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) were separated using FicolI-Paque PLUS. Results: LS-007 inhibited the proliferation of 6 AL cell lines with IC50 values of 100-200 nmol/L, and decreased the survival of ALL and AML patient-derived lymphocytes with mean LD50 value of 67 and 102 nmol/L, respectively. In kinase assays in vitro, LS-007 was more selective for the CDK family, inhibiting CDK2, CDK9, CDK1 and CDK4 at low nanomolar concentrations. In HL-60 and CCRF-CEM cells, LS-007 (0.1-0.4 μmol/L) dose-dependently induced cell apoptosis predominantly through CDK9 inhibition-related dephosphorylation at the ser2 residue of RNA pol II and the corresponding depletion of anti-apoptotic proteins, especially Mcl-1 and XIAP. LS-007 (0.2 and 0.4 μmol/L) also induced cell apoptosis in the patient-derived lymphocytes. In HL-60, CCRF-CEM and Molt-4 cells, combined application of LS-007 with ABT-199 (1 or 2 μmol/L) markedly increased cell apoptosis with a maximal decrease in the XIAP levels as compared with either drug used alone. Conclusion: CDK inhibitor LS-007 potently inhibits the established human AL cell lines and primary AL blasts, and it also shows remarkable synergy with Bcl-2 inhibitor ABT-199.
关 键 词:acute leukemia CDK9 LS-007 ABT-199 APOPTOSIS drug synergism
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...