Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer:Material Growth and Device Fabrication  被引量:1

Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer:Material Growth and Device Fabrication

在线阅读下载全文

作  者:巩稼民 王权 闫俊达 刘峰奇 冯春 王晓亮 王占国 

机构地区:[1]School of Electronic Engineering,Xi'an University of Posts and Telecommunications [2]Key Laboratory of Semiconductor Materials Science,Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Institute of Semiconductors,Chinese Academy of Sciences

出  处:《Chinese Physics Letters》2016年第11期99-103,共5页中国物理快报(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant Nos 61204017 and 61334002;the National Basic Research Program of China;the National Science and Technology Major Project of China

摘  要:AlGaN/GaN high electron mobility transistors (HEMTs) grown on Fe-modulation-doped (MD) and unintentionally doped (UID) GaN buffer layers are investigated and compared. Highly resistive GaN buffers (10^9Ω·cm) are induced by individual mechanisms for the electron traps' formation: the Fe MD buffer (sample A) and the UID buffer with high density of edge-type dislocations (7.24×10^9cm^-2, sample B). The 300K Hall test indicates that the mobility of sample A with Fe doping (2503cm^2V^-1s^-1) is much higher than sample B (1926cm^2V^-1s^-1) due to the decreased scattering effect on the two-dimensional electron gas. HEMT devices are fabricated on the two samples and pulsed I–V measurements are conducted. Device A shows better gate pinch-off characteristics and a higher threshold voltage (-2.63V) compared with device B (-3.71V). Lower gate leakage current |IGS| of device A (3.32×10^-7A) is present compared with that of device B (8.29×10^-7A). When the off-state quiescent points Q_2 (V GQ2=-8V, V DQ2=0V) are on, V th hardly shifts for device A while device B shows +0.21V positive threshold voltage shift, resulting from the existence of electron traps associated with the dislocations in the UID-GaN buffer layer under the gate. Under pulsed I–V and transconductance G m–V GS measurement, the device with the Fe MD-doped buffer shows more potential in improving reliability upon off-state stress.AlGaN/GaN high electron mobility transistors (HEMTs) grown on Fe-modulation-doped (MD) and unintentionally doped (UID) GaN buffer layers are investigated and compared. Highly resistive GaN buffers (10^9Ω·cm) are induced by individual mechanisms for the electron traps' formation: the Fe MD buffer (sample A) and the UID buffer with high density of edge-type dislocations (7.24×10^9cm^-2, sample B). The 300K Hall test indicates that the mobility of sample A with Fe doping (2503cm^2V^-1s^-1) is much higher than sample B (1926cm^2V^-1s^-1) due to the decreased scattering effect on the two-dimensional electron gas. HEMT devices are fabricated on the two samples and pulsed I–V measurements are conducted. Device A shows better gate pinch-off characteristics and a higher threshold voltage (-2.63V) compared with device B (-3.71V). Lower gate leakage current |IGS| of device A (3.32×10^-7A) is present compared with that of device B (8.29×10^-7A). When the off-state quiescent points Q_2 (V GQ2=-8V, V DQ2=0V) are on, V th hardly shifts for device A while device B shows +0.21V positive threshold voltage shift, resulting from the existence of electron traps associated with the dislocations in the UID-GaN buffer layer under the gate. Under pulsed I–V and transconductance G m–V GS measurement, the device with the Fe MD-doped buffer shows more potential in improving reliability upon off-state stress.

关 键 词:GAN in HEMT is Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer:Material Growth and Device Fabrication of Fe with on 

分 类 号:TN386[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象