检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马小敏[1] 高剑[2] 吴驰[1] 何锐[2] 龚奕宇[1] 李熠[2] 吴天宝[1]
机构地区:[1]国网四川省电力公司电力科学研究院,四川成都610072 [2]国网四川省电力公司,四川成都610041
出 处:《中国电力》2016年第11期46-50,共5页Electric Power
摘 要:为了降低输电线路覆冰事故对电网安全造成的严重影响,对输电线路覆冰厚度进行预测将能够有效地指导电网抗冰工作。提出了基于灰色支持向量机的输电线路覆冰厚度短期预测模型,分析了样本中脏数据的剔除及数据预处理方法,通过模型预测值与实测数据的对比验证了该模型的准确性和适用性,根据模型预测的线路最大覆冰厚度值对现场观冰、冰情预警以及开展交直流融冰提供策略指导。将该模型与传统的支持向量机和广义回归神经网络覆冰预测模型进行了对比,结果表明,该模型平均误差为0.325 mm,平均绝对百分误差仅为2.61%,适用于输电线路覆冰厚度短期预测。在易覆冰地区,应用该预测模型能够更好地指导输电线路抗冰工作。In order to reduce the impact of icing accidents on transmission fines, prediction of icing thickness on transmission lines is very effective in anti-icing work of power grid. A short-term prediction model based on grey support vector machine for icing thickness of transmission lines is proposed. The methods of dirty data elimination and data preprocessing are analyzed. The accuracy and applicability of proposed model are verified by comparison between model predictions and measured data. Predicted maximum ice thickness can provide guidance on monitoring icing condition, early warning and AC/DC ice melting work. Compared with support vector machine (SVM) and generalized regression neural network prediction model, the proposed method has average error of 0.325 mm, and average absolute error of 2.61%, which is suitable for short-term prediction of icing thickness of transmission line. The application of the prediction model can guide the transmission line ice-resistant work in the ice area.
关 键 词:覆冰 输电线路 短期预测 灰色模型 支持向量机模型 在线监测
分 类 号:TM752[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.20