基于剩余电流固有模态能量特征的生物触电故障诊断模型  被引量:20

Fault diagnosis model for biological electric shock based on residual current intrinsic mode function energy features

在线阅读下载全文

作  者:王金丽[1] 刘永梅[1] 杜松怀[2] 关海鸥[3] 刘官耕 苏娟[2] 韩晓慧[2] 王利[1] 

机构地区:[1]中国电力科学研究院配电研究所,北京100192 [2]中国农业大学信息与电气工程学院,北京100083 [3]黑龙江八一农垦大学信息技术学院,大庆163319

出  处:《农业工程学报》2016年第21期202-208,共7页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家电网公司科技项目(PDB5120152336);国家自然科学基金项目(51177165)

摘  要:针对未来低压电网剩余电流保护技术中,生物触电故障诊断与剩余电流之间具有不确定的潜在规律及关系映射,提出了一种基于剩余电流固有模态能量特征的生物触电故障诊断模型。首先应用Hilbert-Huang变换明确了生物触电故障时,剩余电流各固有模态能量在时间和各种频率尺度上的分布,其中低频IMF分量的能量占有率高达86.35%,建立了剩余电流固有模态能量特征的提取方法;然后以选取剩余电流各IMF分量5维度能量特征向量,为生物触电故障诊断模型提供有效特征的信息源,利用量子遗传计算的快速寻优性和神经计算的自适应性有机结合,建立了一种量子遗传模糊神经网络作为触电故障模式分类归属的决策系统,仿真试验准确率达到100%。为研发基于人体触电电流而动作的新型剩余电流保护装置,提供可靠的理论依据和方法支撑。Residual current operated protective devices(RCDs) have a wide range of application in low-voltage power grids. RCDs play an important role in preventing electric shock hazard and avoiding fire disaster caused by ground fault. In general, the root mean square(RMS) value of whole leakage current signal detected is considered as the unique criterion to determine whether the protector acts or not. The traditional RCDs cannot classify and identify electric shock fault type automatically based on whole leakage current signal. Theoretical analysis and operation experience indicate that such a criterion is unavailable in identification if an organism electric shock fault has occurred. The uncertain potential regularity and mapping relations exist between the biological shock fault diagnosis and residual current. To decrease the malfunction and tripping phenomenon and increase the reliability and the rate of proper commissioning for RCDs, a fault diagnosis model for biological electric shock based on residual current intrinsic mode function(IMF) multidimensional energy features is proposed innovatively for residual current protection technologies in the future low-voltage power grid. First, the electric shock current of organism(animal) is decomposed into five IMF components and one residual component by Hilbert-Huang transform method. The energy share of low frequency component IMF4 and IMF5 is as high as 86.35%, which can meet the needs of more than 86% for the measured signal, and the correlation coefficient of the amplitude of the low frequency IMF components is up to 0.99 or more. And the distribution of IMF energy on time and various frequency scales is made clear when the biological electric shock fault occurs. Residual current signal performance information is converted into energy feature vectors. The extraction method of IMF energy features in residual current is established. Then, the five-dimensional energy eigenvector in each residual current IMF component is selected to provide effective cha

关 键 词:电力系统 电流调控 模型 剩余电流 固有模态分量 能量特征 生物触电故障 模糊神经网络 模式诊断模型 

分 类 号:TM77[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象