异形桥梁损伤识别方法及参数影响分析  被引量:7

Damage identification method and factor evaluation for irregular-shaped bridge

在线阅读下载全文

作  者:赵云鹏[1,2] 于天来[1] 焦峪波[3] 宫亚峰[3] 宋刚[3] 

机构地区:[1]东北林业大学土木工程学院,哈尔滨150040 [2]辽宁省交通规划设计院,沈阳110166 [3]吉林大学交通学院,长春130022

出  处:《吉林大学学报(工学版)》2016年第6期1858-1866,共9页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(51408258);中国博士后科学基金项目(2014M560237;2015T80305);中央高校基本科研业务费专项资金项目(JCKY-QKJC06);吉林省科技厅青年科研基金项目(20160520068JH)

摘  要:针对现有异形桥梁结构损伤识别方法的局限性和参数影响的不确定性,本文首先详细分析了损伤程度、传感器数量和模态阶次等参数对损伤识别指标(振型差、模态曲率差、模态柔度差及其曲率)的影响效果,确定将模态柔度差曲率作为识别指标。其次,提出异形桥梁两阶段损伤识别方法,在采用模态柔度差曲率实现损伤定位基础上,基于遗传算法优化支持向量机对损伤程度进行准确识别。损伤识别结果验证了该方法的有效性和准确性。Traditional damage identification methods are difficult to accurately identify the damage location and extent of irregular-shaped bridge because of the complex structure of the bridge. To overcome the shortcoming of these damage identification methods and the uncertainty of factor influence, the factor effect on damage identification indicator is synthetically analyzed, and a novel damage identification approach for irregular-shaped bridge is proposed based on modal flexibility difference curvature and Support Vector Machine optimized by Genetic Algorithm (SVM-GA). First, the damage identification effect on the indicators (modal shape change, modal curvature difference, modal flexibility difference and curvature) is studied under the impacts of damage severity, number of sensors and modal orders. Second, the two stage damage identification method for irregular-shaped bridge is presented. On the basis of determining the damage location using modal flexibility difference curvature, the damage extent is forecasted and identified based on SVM-GA. Damage identification results demonstrate that the proposed method is feasible and accurate.

关 键 词:道路工程 异形桥梁 损伤识别 模态柔度差曲率 遗传算法 支持向量机 

分 类 号:U446[建筑科学—桥梁与隧道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象