检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨理工大学应用科学学院,黑龙江哈尔滨150080
出 处:《哈尔滨理工大学学报》2016年第5期113-118,共6页Journal of Harbin University of Science and Technology
基 金:黑龙江省自然科学基金(A2015018)
摘 要:为了研究Banach空间的不动点性质,J.Garcia-Falset引入了一个几何常数R(a,X),并证明了若Banach空间X满足R(a,X)<1+a(0<a<1),则X关于非扩张映射具有不动点性质.在R(a,X)的基础上在Banach空间上引入了一个新的几何常数R1(a,X),证明了当R1(a,X)<1+a时,Banach空间X关于非扩张映射具有弱不动点性质,并且给出在赋Luxemburg范数的Orlicz序列空间中常数R1(a,X)的具体数值.In order to study the fixed point property in Banach space , J. Garcia-Falset introduces a geometric constant R(a,X) and proves that if "R(a,X) 〈 1 +a(0 〈a 〈 1)"sets up in a Banach space X, then X has the fixed point property for non-expansive mapping. On the base of R( a ,X), a new geometric constant R1 ( a ,X) is in- troduced in Banach space. It is proved that the Banach space X has the weak fixed point property for non-expansive mapping if "R1 (a,X) 〈 1 + a" sets up, and the specific value for the constant Rl (a,X) is given in Orlicz se- quence space with the Luxemburg norm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.51.7