基于模糊神经网络的小微企业信用评级研究  被引量:57

Research on the credit rating of small and micro enterprises based on fuzzy neural network

在线阅读下载全文

作  者:肖斌卿[1] 杨旸[2] 李心丹[1] 李昊骅[1] 

机构地区:[1]南京大学工程管理学院,南京210093 [2]南京大学商学院,南京210093

出  处:《管理科学学报》2016年第11期114-126,共13页Journal of Management Sciences in China

基  金:国家自然科学基金资助重点项目(70932003);国家自然科学基金资助项目(71271109;71201074;70901037;71271110);教育部科技创新工程重大项目培育资金资助项目(708044);教育部人文社会科学研究资助青年项目(13YJC790174)

摘  要:当前小微企业贷款需求日益增加,建立行之有效的小微企业信用评级模型已成为学术界和实务界关注的焦点.本文在阐述模型和构建指标体系的基础上,提出基于模糊神经网络开展小微企业信用评级的研究步骤,以某农村商业银行小微企业信贷微观数据为实证样本,分别进行小型企业和微型企业信用评级检测.实证结果表明,模糊神经网络模型在小微企业信用评级研究中具有较BP神经网络模型更高的检测精度.模型能够实现评级主观性与客观性结合,可对数据进行定性调节和批量处理,且具有明确的计算过程和决策规则,故适用于信用评级研究且具有稳健性.Currently, the loan demand of small and micro enterprise is rapidly increasing, thus the establish- ment of an effective credit rating model for small and micro enterprises has become the focus of attention in the academic and practical fields. On the basis of the model and the index system, this paper puts forward the re- search steps of small and micro enterprises credit rating based on fuzzy neural network. This paper takes the micro data of the small and micro enterprises in a rural commercial bank as the empirical sample, and carry out the small enterprises and micro enterprises credit rating test separately. The empirical results show that the fuzzy neural network model in the small and micro enterprises credit rating research brought a higher detection accuracy than the BP neural network model. The model can realize the combination of subjective and objective ratings; can be used for qualitative adjustment and batch processing of data; and has explicit calculation process and decision rules. Therefore, it is suitable for the research of credit rating and has robustness.

关 键 词:模糊理论 神经网络 小微企业 信用评级 

分 类 号:F832.59[经济管理—金融学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象