检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学电子与信息工程学院,西安710049 [2]河南科技大学信息工程学院,河南洛阳471023
出 处:《西安交通大学学报》2016年第12期87-91,共5页Journal of Xi'an Jiaotong University
基 金:国家自然科学基金资助项目(61370220);河南省高校科技创新团队支持计划资助项目(15IRTSTHN010)
摘 要:针对矩阵分解推荐算法在潜在属性与已知属性之间不能建立对应关系的问题,提出了一种混合显式属性与隐式属性的矩阵分解算法。该算法使用显式属性的相关性对因子矩阵进行约束,能够抑制稀疏数据矩阵分解中过拟合的问题,提高推荐精度,由于因子矩阵中包含显式属性,所以混合因子矩阵分解算法可以实现对新用户和新产品推荐,部分地解决了冷启动问题,实现了从评分数据到显式属性的映射,并对推荐结果给出一定的解释。在MovieLens数据集上的实验结果表明:相同因子数下,混合因子矩阵分解算法的推荐精度均优于偏置概率矩阵分解算法,并能够基于显式属性实现对新产品的推荐。A novel hybrid matrix factorization algorithm (HMF) is proposed to solve the problem that the correlation between latent factors and explicit attributes can not be established in traditional matrix factorization methods. The algorithm combines implicit and explicit attributes and uses correlations among explicit attributes to constrain factor matrixes, and to relieve the over fitting in sparse data matrix decomposition. Since factor matrixes include explicit attributes, HMF is used to solve the problem of cold start and to recommend new items. HMF realizes mapping from rating matrix to weights of explicit attributes and offers an interpretation for recommender items. Experiment on MovieLens clatasets shows that the accuracy of HMF is superior to that of BPMF for same number of factors, and HMF can be used to recommend new items based on explicit attributes.
分 类 号:TP393[自动化与计算机技术—计算机应用技术] G558[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.198.191