检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学建设管理系,北京100084 [2]北京林业大学经济管理学院,北京100083
出 处:《统计与决策》2016年第23期174-177,共4页Statistics & Decision
基 金:国家自然科学基金资助项目(71073096)
摘 要:文章针对中国建筑业上市公司样本规模较小,常规预测方法难以奏效的特点,尝试将支持向量机应用于其盈利能力预测。首先从不同的角度选择盈利能力单项指标,以此为基础构建反映公司盈利能力的集成指标,结合2001—2014年中国A股建筑业上市公司的数据,构建基于支持向量的盈利能力预测模型,对样本公司的盈利能力进行预测。研究结果显示,经过训练的支持向量机模型能较为成功地预测样本公司的盈利能力,2003—2014年的预测准确率均超过80%;通过与BP神经网络的对比试验可以发现,在预测中国建筑业上市公司盈利能力方面,支持向量机表现出了较明显的优势。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229