基于Wang-Landau抽样的带静不平衡约束的简化卫星舱布局方法  被引量:1

Packing Method Based on Wang-Landau Sampling for Simplified Satellite Module with Static Non-equilibrium Constraints

在线阅读下载全文

作  者:刘景发[1,2] 黄娟[1,2] 蒋宇聪 刘文杰[1,2] 郝亮[1,2] 

机构地区:[1]南京信息工程大学江苏省网络监控工程中心,南京210044 [2]南京信息工程大学计算机与软件学院,南京210044

出  处:《计算机科学》2016年第12期287-292,共6页Computer Science

基  金:国家自然科学基金项目(61373016);江苏省"六大人才高峰"项目(DZXX-041)资助

摘  要:以简化卫星舱承载板上三维布局设计问题为背景,研究一类带静不平衡约束的圆柱体和长方体混合待布物布局问题。针对该三维布局问题,将已成功应用于统计物理学和蛋白质结构预测的Wang-Landau抽样算法引入布局问题中。Wang-Landau抽样算法通过在复杂布局空间中进行有效抽样来得到一个平坦的能量直方图,从而精确估计布局系统的状态密度。通过将Wang-Landau抽样算法与带加速策略的最速下降法、质心平移策略相结合,提出了改进的Wang-Landau抽样算法。对文献中两个算例进行了实算,计算结果表明,改进的Wang-Landau抽样算法的收敛速度和解的质量相比文献中其它算法均有较大的提高。With the background of the three-dimensional layout optimization problem on the bearing plate of the simpli- fied satellite module, we studied the cylinder and cuboid mixed layout problem with static non-equilibrium constraints. To address this problem, the Wang-Landau sampling algorithm, which has been successful applied to statistic physics and the protein structure prediction problem, is introduced to solve the packing problem of satellite module at the first time. The Wang-Landau sampling algorithm can produce a flat histogram of energy by sampling the energies of the whole energy space effectively, so as to estimate the density of states of all possible energiesin the range accurately. By incorporating the steepest descent method with an accelerating strategy and the translation of the center of mass into the Wang-Landau sampling algorithm, an improved Wang-Landau sampling algorithm was proposed. The computational results of two classic instances from the literature show that the convergence rate and the quality of solution of the improved Wang-Landau sampling algorithm outperform other algorithms in literature.

关 键 词:静不平衡约束 Wang-Landau抽样算法 卫星舱布局 最速下降法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象