汽轮机转子典型振动故障诊断模型训练系统  被引量:2

Research of Turbine Rotor Vibration Fault Diagnosis for Typical Model Training System

在线阅读下载全文

作  者:郭海峰[1] 

机构地区:[1]天津国华盘山发电有限责任公司,天津301900

出  处:《应用能源技术》2016年第11期4-5,共2页Applied Energy Technology

摘  要:文中基于支持向量机分类理论,运用二叉树算法建立了汽轮机转子典型故障的多分类诊断模型训练系统。通过小波包分析、经验模态分解(EMD)和傅里叶变换(FFT)三种信号处理方法训练出的诊断模型训练系统对测试样本分类的正确率、比较三种训练方法的优劣。Based on the theory of support vector machine (SVM) classification, steam turbine rotor was established. In order to build a typical fault classification diagnosis model of training system, the binary tree algorithm is applied. Through wavelet packet analysis, empirical mode decomposition (EMD) and Fourier transform (FFT) of three kinds of signal processing methods based on the statistics of the diagnosis model for training system are analyzed. In a certain extent, the pros and cons of three kinds of training methods can be compared.

关 键 词:小波包分析 经验模态分解 傅里叶变换 二叉树算法 支持向量分类机 

分 类 号:TK268[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象