泊松噪声下图像去模糊的几个非凸模型(英文)  被引量:1

Several Nonconvex Models for Image Deblurring under Poisson Noise

在线阅读下载全文

作  者:刘刚[1] 黄廷祝[1] 

机构地区:[1]电子科技大学数学科学学院,成都611731

出  处:《工程数学学报》2016年第6期613-630,共18页Chinese Journal of Engineering Mathematics

基  金:The National Basic Research Program 973 of China(2013CB329404);the National Natural Science Foundation of China(61370147;61170311)

摘  要:图像复原中通常假设图像在梯度域上是稀疏的,而非凸正则化方法会更加促进稀疏性.本文基于近年出现的几类非凸正则项,提出了泊松噪声下图像去模糊问题的几个非凸模型,发展了相应的高效求解算法,并研究了算法的收敛性;数值实验表明所提出的非凸模型可以增强图像在梯度域上的稀疏性,并优于一些现有的方法.In image restoration, images are often assumed to be sparse after taking gradient. Nonconvex regularizers could produce more sparse gradients than convex regularizers. In this paper, based on some recent nonconvex regularizers, we propose several nonconvex models for image deblurring under Poisson noise. We develop efficient numerical algorithms for solving the proposed models and carry out the convergence analysis. Numerical results show that the proposed models achieve an enhanced gradient sparsity and yield restoration results competitive with some existing methods.

关 键 词:非凸正则化 交替方向乘子方法 稀疏性 泊松噪声 图像去模糊 

分 类 号:O414.22[理学—理论物理] TN911.73[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象