检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于海姣[1,2] 温小虎[1] 冯起[1] 尹振良[1] 常宗强[1] 鱼腾飞[1] 牛晓宇
机构地区:[1]中国科学院寒区旱区环境与工程研究所,甘肃兰州730000 [2]中国科学院大学,北京100049 [3]甘肃省水文水资源局,甘肃兰州730000
出 处:《中国沙漠》2016年第5期1435-1442,共8页Journal of Desert Research
基 金:国家自然科学基金项目(31370466)
摘 要:准确预测干旱区地下水埋深,对区域地下水资源的合理开发利用与生态环境保护具有十分重要的意义。以额济纳盆地3个地下水埋深观测井为对象,运用小波变换与支持向量机耦合模型(WA-SVM)对观测井未来1个月的地下水埋深进行了短期预测。为检验WA-SVM的有效性,将模拟结果与未经小波变换的SVM模型进行了对比。结果表明:在对干旱区地下水埋深进行短期预测时,相较于SVM模型,WA-SVM模型的预测精度显著提高。WA-SVM模型在干旱区地下水埋深预测中有更好的适用性,可以为干旱地区地下水埋深动态预测提供新的方法和思路,是资料有限的条件下地下水埋深预测的有效方法。Prediction of monthly groundwater depth plays an important role in the reasonable utilization and management of groundwater water resources and ecological environmental protection.In this study,a monthly groundwater depth prediction model was built to predict the groundwater depth in 3 typical groundwater monitoring wells of the Ejin Basin by using wavelet-support vector machine(WA-SVM).In order to test the validity of the developed model,comparison was made between the WA-SVM model and the SVM model in terms of different evaluation criteria during validation period.Results showed that performances obtained by WA-SVM were satisfactory and WA-SVM model performed better than SVM model.Finally,it can be concluded that the WA-SVM model we had developed may be considered as an effective tool to establish a short-term monthly groundwater depth forecasting model in semiarid mountain regions where have few meteorological observatories.
分 类 号:P641.7[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.66