检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北林业大学机电工程学院,黑龙江哈尔滨150040
出 处:《计算机工程与设计》2016年第12期3300-3305,3315,共7页Computer Engineering and Design
摘 要:为准确检测低速径向运动的小运动目标,降低系统的噪声,提高系统的实时性,提出一种基于Nvidia通用并行计算架构(CUDA)的稀疏脉冲耦合神经网络运动目标检测的并行算法。根据图形处理单元(GPU)的并行结构和硬件特点,将改进帧差法得到二值图像的过程,以及差分二值图像映射到稀疏脉冲耦合神经网络模型的过程均放GPU上执行,提高算法的计算效率;选择利用纹理存储和共享存储方式,提高数据的访问效率,降低算法的复杂度。实验结果表明,该算法对运动目标检测的准确性和实时性优于其它方法。To detect the small moving targets with low velocity and radial motion,to reduce the system noise and improve the system real-time performance,aparallel algorithm for moving object detection in sparse pulse coupled neural network based on Nvidia compute unified device architecture(CUDA)was proposed.According to the parallel architecture and hardware characteristics of the graphics processing unit(GPU),the improved frame difference method was used in the process of getting the two value image,and the differential two value image was mapped to the sparse pulse coupled neural network model,which was put on GPU to improve the computational efficiency of the algorithm.At the same time,to improve the efficiency of data access and reduce the complexity of the algorithm,the use of texture memory and shared memory was selected.Experimental results were compared with other methods,and the accuracy and real-time performance of the proposed algorithm are verified.
关 键 词:通用并行计算架构 稀疏脉冲耦合神经网络 改进帧差法 运动目标检测
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28