检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学信息与电气工程学院,江苏徐州221008 [2]江苏联合职业技术学院信息技术系,江苏徐州221008
出 处:《计算机工程与设计》2016年第12期3316-3321,共6页Computer Engineering and Design
摘 要:针对当前图像修复方法在对遮蔽物损坏图像复原时,存在明显的模糊效应与不连续效应等不足,提出局部最小二乘逼近优化耦合增强K-NN块搜索的图像修复算法。通过对图像修复机理进行分析,联合等权方法与K-NN(K近邻)块,将未知像素的估值转化为对线性组合函数的求解;定义基于边缘的优先项,计算输入块的边缘特性,提出基于局部学习映射函数的增强型K-NN块搜索方法,降低未知像素值K-NN的误配;采用基于局部最小二乘逼近优化方法,将相似块中的像素传播至损坏区域,完成图像修复。测试结果表明,与当前图像修复算法相比,在遮蔽物损坏图像复原中,该技术拥有更好的修复质量,有效降低了模糊效应,克服了修复时存在的间断效应。To solve these drawbacks such that when using the current image inpainting algorithm processes the image damaged by concealment,the obvious blurring effects and discontinuous effects emerge in the repairing areas,an image inpainting algorithm based on local least square approximation optimized and enhanced K-NN search was proposed.By analyzing image repair mechanism,combined uniform weights with K-NN patches,the estimation of unknown pixels was obtained by computing a linear combination.Edge-based preferred term was defined,and the term was taken into account.The edginess of the input patch was calculated,an enhanced K-NNsearch method was proposed based on local learning of mapping functions,to cope with that the found K-NN might not correspond to the unknown pixels.The algorithm based on local least square approximation optimization was used to spread pixels in domain blocks to damaged region,to complete the image inpainting.The simulation results show that comparing with current image inpainting algorithm,this algorithm has better inpainting quality and effectively reduces the blurring effects,overcomes the discontinuous effects in inpainting of images damaged by concealment.
关 键 词:最小二乘法 邻近像素值 K邻近 学习映射函数 优先项 图像修复
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28