检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁石油化工大学顺华能源学院,辽宁抚顺113001 [2]中国矿业大学环境与测绘学院,江苏徐州221008
出 处:《现代雷达》2016年第12期56-60,共5页Modern Radar
基 金:国家重大科学仪器设备开发专项项目(2012YQ24012705);中煤科工集团科技创新基金面上项目(2014M5030)
摘 要:为了提高植被变化检测精度和获取植被变化类型信息,在综合利用像素级变化检测、特征级变化检测和分类后变化检测的基础上,提出了一种由粗到精并准确获取变化信息的植被变化检测方法。文中选取2002年和2007年的Quick Bird多光谱图像作为试验对象,使用像素级变化检测处理多时相遥感数据,确定出包含植被变化的候选区域;然后,使用特征级变化检测确定出变化区域;最后,结合分类后变化检测获取变化信息的位置和类型。通过对两时相遥感数据进行变化检测试验,并与各单独检测方法对比,验证新方法的有效性。结果表明:该方法在提高了变化检测精度的同时能够提供变化地物信息,可以有效地应用于植被变化信息的检测。In order to improve the accuracy of change detection and obtain the information of vegetation changes,we proposed a method of obtain accurate from coarse to fine on the basis of utilization of pixel level change detection, feature-level change detec-tion and after classification change detection. 2002 and 2007 QuickBird multispectral image is selected as a test object, using pix-el-level change detection process the multi-temporal remote sensing data to determine the candidate region including vegetation changes, and then using feature-level change detection to determined the changes in the region. Finally the location and type of changes information are obtained by using after classifition detection change. By the test of two remote sensing data change detec-tion, and compare with the individual detection method, the validity of the new method is verified. The results showed that: new method could improve the detection accuracy changes while providing feature information changes, and could be effectively applied to vegetation change detection information.
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15