检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵军[1] 赵艳[1] 杨勇[1,2] 朴仁圭 黄勇[1]
机构地区:[1]重庆邮电大学计算智能重庆市重点实验室,重庆400065 [2]韩国仁荷大学情报通信工学部,仁川402751
出 处:《重庆邮电大学学报(自然科学版)》2016年第6期844-848,共5页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:重庆市自然科学基金项目(CSTC;2007BB2445);韩国科学与信息科技未来规划部2013年ICT研发项目(10039149)~~
摘 要:堆积降噪自动编码机是一种典型的深度学习模型,它能够刻画数据丰富的内在信息,具有较强的特征学习能力。基于主成分分析(principal component analysis,PCA)技术和堆积降噪自动编码机(stacked denoising autoencoders,SDAE)模型,提出一种新的表情识别算法PCA+SDAE。该算法对人脸图片进行裁剪及归一化等预处理,采用主成分分析技术对人脸特征进行线性降维,再利用堆积降噪自动编码机逐层进行特征学习并同时实现对人脸表情数据的非线性降维,可以得到更好的、维度更低的表情特征,并据此进行表情分类。对PCA+SDAE算法的仿真测试实验结果表明,其综合性能比其他的基于深度学习模型的表情识别方法更好,同时与传统的非深度学习表情识别方法相比,它具有更高的表情识别正确率。A Stacked Denoising Auto-Encoders( SDAE) is a typical deep learning model. Because of its capability of disclosing rich inherent information from data,and it has a strong ability of leaning features. Herein,a new algorithm principal components analysis + stacked denoising auto-encoders( PCA + SDAE) for facial expression recognition is put forward on the bases of principal components analysis( PCA) technology and stacked denoising auto-encoders model. By the new algorithm PCA + SDAE,a facial image is firstly processed by cutting and normalization; then the linear dimensionality of its expression features is reduced by PCA; lastly,a greed layer-wise feature learning is conducted by a SDAE,and the nonlinear dimensionality of its expression features is simultaneously reduced. Consequently,facial expression can be recognized based on the more powerful and lower dimensional facial features can be obtained. The results of simulation test experiments on algorithm PCA + SDAE show that the proposed method has better overall performance than some other expression recognition methods based on deep learning models; and it can also get higher expression recognition accuracy than traditional non-deep learning based expression recognition methods.
关 键 词:表情识别 深度学习 堆积降噪自动编码机 主成分分析
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145