检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭晓冰[1,2] 李启顺 王丽珍[1] 朱玉全[1]
机构地区:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013 [2]江苏大学信息化中心,江苏镇江212013 [3]镇江市水利局,江苏镇江212001
出 处:《江苏大学学报(自然科学版)》2017年第1期78-85,共8页Journal of Jiangsu University:Natural Science Edition
基 金:国家自然科学基金资助项目(71271117);江苏省六大人才高峰项目(2013-WLW-005);江苏省自然科学基金资助项目(BK20150531);江苏省高校研究生科研创新计划项目(1291170028)
摘 要:针对未来应用SVM进行数据挖掘所面临的信息安全问题,对隐私保护支持向量机分类规则挖掘方法进行研究,以提高支持向量机进行分类时的数据安全性,同时获得有效结果.分析了支持向量机分类方法的特点和可能面临的安全威胁;对国内外相关研究成果进行了归纳和梳理;重点从数据干扰和数据加密2个角度,给出了支持向量机隐私保护技术的最新研究进展;归纳出目前研究存在的问题和未来研究的趋势.指出了支持向量机隐私保护的研究方向:分布式环境下局部分类器融合隐私保护策略、更高效率的全同态加密方案、保护SVM分类规则的方案以及适用于大数据挖掘的隐私保护SVM技术.To realize information security for future support vector machines (SVM)data mining,the privacy-preserving support vector machines (PPSVM) was investigated to obtain effective result.The characteristics of SVMclassifiers were analyzed to find the security hole.The latest literatures and related research were summarized. The recent progress of privacy-preserving support vector machines was presented based on data perturbation and data encryption.The future hot research directions of new privacy-preserving support vector machine technologies in distributed environment,more effective fully homomorphic encryption(FHE)schemes and privacy-preserving support vector machine technologies for big data mining were pointed out.
关 键 词:隐私保护 支持向量机 安全多方计算 同态加密 大数据
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28